首页|基于STL-分解与LSTM-RF组合模型的PM2.5浓度预测

基于STL-分解与LSTM-RF组合模型的PM2.5浓度预测

扫码查看
细微颗粒(PM2.5)与大气环境、人体健康息息相关.为了能及时、准确的估算出PM2.5浓度及污染等级,本研究分别构建了STL-LSTM-RF的PM2.5浓度预测模型,实验区域选择上海市,选取2021年逐小时PM2.5浓度数据、其余空气污染物数据,和欧洲中期天气预报中心3km*3km再分析数据开展PM2.51-6H的预测实验.结果表明STL-LSTM-RF模型相比LSTM拟合效果在各个时间尺度上均有提升,在1-6小时内的预测上成绩良好,同时捕捉突变数据的技术也有提高.由于数据滞后值的增加,LSTM的预报效能有明显减弱的倾向,而STL-LSTM-RF 模拟效能降低的水平则要明显小于LSTM模拟.综上所述,STL-LSTM-RF模拟可以做到更有效、精确的预报PM2.5浓度,也可以为民众生活出行、企业生产生活、政府部门决策等领域提供技术依据,因此具备了很大的使用价值.
PM2.5 Concentration Prediction Based on the Combination of STL Decomposition and LSTM-RF Ensemble Model
Fine particulate matter(PM2.5)is closely related to atmospheric environment and hu-man health.In order to estimate PM2.5 concentration and pollution level in a timely and accurate manner,this study constructed STL-LSTM-RF models for PM2 5 concentration prediction.The experimental area selected was Shanghai,and hourly PM2 5 concentration data for 2021,as well as data on other air pollutants,and 3km*3km reanalysis data from the European Centre for Me-dium-Range Weather Forecasts,were used to conduct PM2.5 prediction experiments for 1-6 hours.The results show that the STL-LSTM-RF model has improved fitting effect compared to LSTM at all time scales,achieving good performance in predicting PM2 5 concentration for 1-6 hours and improving the ability to capture sudden changes in data.Due to the increase in lagged values of data,the predictive efficiency of LSTM has significantly decreased,while the decrease in simulation efficiency of the STL-LSTM-RF model is significantly smaller than that of LSTM.In summary,STL-LSTM-RF simulation can achieve more effective and accurate predic-tion of PM2.5 concentration,and can also provide technical support for people's daily travel,en-terprise production and life,and government decision-making.Therefore,it has great practical value.

PM2.5LSTMRFSTL

何宇涵

展开 >

江西理工大学土木与测绘工程学院,江西赣州 341400

PM2.5 LSTM RF STL

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(10)