首页|基于大数据的边境人员图像修复应用研究

基于大数据的边境人员图像修复应用研究

扫码查看
随着人脸识别和视频监控技术的快速进步,人像检测在边境安全中变得至关重要.图像质量,常受模糊和噪声影响,对监控效率构成挑战.为此,文章引入一种基于Transformer的模糊人脸修复网络,旨在改善受损图像质量,提升边境监控系统的性能.通过在Columbia Gaze数据集上进行实验,评估了模型在关键性能指标LPIPS和SSIM上的表现.结果显示,该网络显著提高了图像清晰度,为边境人员图像的实时预警提供了坚实技术支持,显著提升了监控系统的可靠性和工作效率,展现了在边境安全监控领域的应用潜力.
Research on Image Restoration of Border Personnel Based on Big Data
With the rapid progress of face recognition and video surveillance technology,portrait detection has become crucial in border security.Image quality,often affected by blur and noise,poses a challenge to the monitoring efficiency.To this end,this study introduces a Transformer-based fuzzy face repair network,aiming to improve the damaged image quality and enhance the performance of the border monitoring system.The performance of the model on the key per-formance indicators LPIPS and SSIM was evaluated by performing experiments on the Colum-bia Gaze dataset.The results show that the network significantly improves the image clarity,provides solid technical support for the real-time warning of the images of border personnel,sig-nificantly improves the reliability and working efficiency of the monitoring system,and shows the application potential in the field of border security monitoring.

deep learningimage restorationborder security

王文婕、秦振凯、罗起宁、陈广成

展开 >

广西警察学院信息技术学院,广西南宁 530028

广西警察学院 公安大数据现代产业学院,广西南宁 530028

苏州科达科技股份有限公司,江苏苏州 215501

大数据 边境人员 Transformer人脸图像修复 鲁棒性

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(10)