首页|基于数据挖掘技术的医院信息资源管理平台设计

基于数据挖掘技术的医院信息资源管理平台设计

扫码查看
随着大数据及云计算技术、云服务系统平台的迅速发展,医院医疗门诊信息、日常事务信息资源的采集与存储管理,更多引入大数据挖掘技术、云服务技术建构起服务于医疗资源调配、存储与共享的分布式系统.基于MVC(Model View Controller)软件开发框架、JSP(Ja-va Server Pages)网页标准、SQL Server数据库、JDBC数据库接口、Web应用服务器、TS(Tower Server)服务器等数字技术,搭建起面向医院就医、门诊诊疗、医护信息管理的云服务系统平台,利用Flume日志采集、Hive流采集工具批量收集局域网内的医务数据信息,依托改进Apriori算法定义关联规则作出海量诊疗数据的关联挖掘分析,将现有已完成挖掘统计的医疗信息、医护信息资源作出分类存储管理,可实现医院诊疗信息、医护信息的规范化管理与共享.
Design of Hospital Information Resource Management Platform Based on Data Mining Technology
With the rapid development of big data,cloud computing technology and cloud service system platform,the collection and storage management of medical outpatient information and daily transaction information resources in hospitals are more and more introduced into big data mining technology and cloud service technology to build a distributed system serving the alloca-tion,storage and sharing of medical resources.Based on digital technologies such as MVC(Mod-el View Controller)software development framework,JSP(Java Server Pages)web standard,SQL Server database,JDBC database interface,Web application server,and TS(Tower Server)server,a cloud service system platform for hospital medical treatment,outpatient diagnosis and treatment,and medical information management is built.The Hive stream collection tool col-lects medical data information in the LAN in batches,relies on the improved Apriori algorithm to define association rules for association mining and analysis of massive diagnosis and treatment data,and classifies and stores the existing medical information and medical information resources that have been mined and counted,so as to realize the standardized management and sharing of hospital diagnosis and treatment information and medical information.

Big Data Mining TechnologyImprovement of Apriori AlgorithmHospital Infor-mation Resource Management PlatformDesign

郭馨

展开 >

安徽医科大学附属宿州医院,安徽宿州 234000

大数据挖掘技术 改进Apriori算法 医院信息资源管理平台 设计

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(10)