首页|融入深度人工智能与时空大数据的软件工程规划研究

融入深度人工智能与时空大数据的软件工程规划研究

扫码查看
随着信息技术的发展,软件工程逐渐成为社会信息化发展的重要支柱.为了对软件工程项目进行调度规划,避免项目的延期交付,研究构建了加入雇员人格特点的软件工程项目调度模型,并通过时空大数据来获取雇员的人格特点.为了对调度模型进行求解,研究设计了考虑两种优先规则的启发式调度算法,充分运用了深度人工智能技术.结果显示,在不同的优先规则下,算法的平均相对偏差也不同.当任务数量和技能数量分别为10和2时,研究所设计算法、CPLEX算法和遗传算法的计算耗时分别为0.39s、627.10s和1.88s.研究所设计算法的性能更具有优势,能够为软件工程项目规划的调度模型求解提供技术上的支持.
Research on Software Engineering Planning Integrating Deep Artificial Intelligence and Spatiotemporal Big Data
With the development of information technology,software engineering has gradually become an important pillar of social informatization development.In order to schedule and plan software engineering projects and avoid delayed delivery,a software engineering project schedu-ling model incorporating employee personality traits was studied and constructed,and employee personality traits were obtained through spatiotemporal big data.In order to solve the scheduling model,a heuristic scheduling algorithm considering two priority rules was studied and designed,fully utilizing deep artificial intelligence technology.The results show that the average relative deviation of the algorithm varies under different priority rules.When the number of tasks and skills arc 10 and 2,respectively,the computational time of the algorithm designed by the re-search institute,CPLEX algorithm,and genetic algorithm is 0.39 seconds,627.10 seconds,and 1.88 seconds,respectively.The performance of the algorithm designed by the research institute is more advantageous and can provide technical support for solving scheduling models in soft-ware engineering project planning.

Artificial intelligenceSpace time big dataSoftware engineeringPriority rulesdis-patch

刘有志

展开 >

湖南大唐先一科技有限公司,湖南 长沙 410004

人工智能 时空大数据 软件工程 优先规则 调度

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(11)