首页|基于高光谱数据的土壤含水量反演

基于高光谱数据的土壤含水量反演

扫码查看
土壤含水量是农业生产发展的重要因素之一,利用无人机搭载高光谱仪可作为一种新型的快速、准确预测土壤含水量的科技手段,对我国农业发展具有重要意义.为消除无人机高光谱数据中背景噪声、冗余性、共线性问题,文章提出对光谱数据进行变换处理后进行主成分分析,将主成分变量作为模型输入变量建立BP神经网络反演模型(PCA-BPNN)和随机森林模型(PCA-RF)进行土壤含水量预测,并利用R2、RMSE、RPD的综合评价指标对两种反演结果进行精度验证与比较.结果表明:光谱倒数对数变换处理能够有效提高模型精度和预测能力,基于倒数对数光谱的PCA-RF模型精度最高(R2M=0.892,RPDv=1.474).
Inversion of Soil Moisture Content Based on Drone Hvperspectral Data
Soil moisture content is one of the important factors for the development of agricul-tural production.The use of unmanned aerial vehicles equipped with spectrometers can serve as a new scientific and technological means for quickly and accurately predicting soil moisture con-tent,which is of great significance for the development of agriculture in China.In order to e-liminate the background noise,redundancy and collinearity problems in UAV hyperspectral da-ta,this paper proposes to transform the spectral data and conduct principal component analysis.The principal component variables are used as model input variables to establish BP neural net-work inversion model(PCA-BPNN)and random forest model(PCA-RF)to predict soil water content,and R2,RMSE The comprehensive evaluation index of RPD verifies and compares the accuracy of two inversion results.The results show that the spectral reciprocal logarithmic trans-formation processing can effectively improve model accuracy and prediction ability,and the PCA-RF model based on reciprocal logarithmic spectroscopy has the highest accuracy(R2M=0.892,RPDv=1.474).

HyperspectralSoil water contentPrincipal component analysis

陈潜

展开 >

湄潭县自然资源调查与国土空间规划中心,贵州 遵义 563000

高光谱 土壤水含量 主成分分析

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)