首页|耦合多视图时空网络和矢量元胞自动机的城市用地变化模拟

耦合多视图时空网络和矢量元胞自动机的城市用地变化模拟

扫码查看
城市土地利用变化的动力源自空间相互作用,充分学习空间作用是提高土地利用模拟精度的重点.文章提出一种基于多视图机制的矢量元胞自动机模型.以美国洛杉矶县为研究区,模拟了2010年至2020年的城市土地利用的变化情况.研究得到以下结论:①MST-GAT-VCA的跨视图机制能够有效学习城市地块变化的时空特征间交互③MSTGAT-VCA模型的总体精度(OA)和品质因数(FoM)分别达到0.9322和0.4193,较传统CA模型有明显提高.研究表明,MSTGAT-VCA模型较传统模型能更好的模拟土地利用变化.
Coupling Multi-view Spatio-temporal Network and Vector Cellular Automatafor Uban Land Use Simulation
The dynamics of urban land use change originates from spatial interactions,and fully learning the spatial roles is the focus of improving the accuracy of land use simulation.In this paper,a vector metacellular automata model based on multi-view mechanism is proposed.Taking Los Angeles County in the United States as the study area,the changes of urban land use from 2010 to 2020 are simulated.The study obtains the following conclusions:i)The cross-view mechanism of MSTGAT-VCA can effectively learn the spatio-temporal interactions of urban parcel changes.iii)The overall accuracy(OA)and quality factor(FoM)of the MSTGAT-VCA model reaches 0.9322 and 0.4193,respectively,which is significantly improved compared with that of the traditional CA model.The study shows that the MSTGAT-VCA model can better simulate land use change than the traditional model.

land use simulationvector cellular automatagraph deep learning

李少爵

展开 >

江西理工大学,江西赣州 341000

土地利用模拟 矢量元胞自动机 图深度学习

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)