首页|面向WSN环境的无线通信安全策略研究

面向WSN环境的无线通信安全策略研究

扫码查看
针对现有运营商WSN安全保护策略存在的效率低、易被攻击成功的缺点,文中基于改进强化学习算法提出了一种面向WSN环境的无线通信安全策略.该策略所对应的核心算法以强化学习模型为基础,利用深度神经网络改进了原模型参数增加造成的训练效率低、输出准确率差的缺陷.同时,基于高斯分布提出直接信任度和间接信任度指标,并使用改进强化学习算法进行自适应更新.最后输出融合信任度,与阈值比较后输出节点性质判定结果.在实验测试中,所提算法与其他算法相比在应用能力和性能指标方面具有明显优势,证明其可以有效监测节点性能,进而提高网络的安全性.
Research on Wireless Communication Security Strategies for WSN Environment
In response to the shortcomings of low efficiency and susceptibility to successful at-tacks in existing WSN security protection strategies of operators,this paper proposes a wireless communication security strategy for the WSN environment based on an improved reinforcement learning algorithm.The algorithm is based on reinforcement learning models and utilizes deep neural networks to improve the shortcomings of low training efficiency and low output accura-cy caused by the increase of original model parameters.At the same time,direct trust and indirect trust indicators are proposed based on Gaussian distribution,and an improved reinforcement learning algorithm is used for adaptive updates.Finally,the fused trust is output,and the node property judgment result is output after comparing with the threshold.In experimental testing,the proposed algorithm has significant advantages in application capability and performance indi-cators compared to other algorithms,proving that it can effectively monitor node performance and improve network security.

Reinforcement learningDeep neural networksGaussian distributionNode trust levelWireless communicationNetwork security

高嵩巍、黄亦琦

展开 >

中国移动通信集团江苏有限公司,江苏常州 213000

福建理工大学,福建 福州 350108

强化学习 深度神经网络 高斯分布 节点信任度 无线通信 网络安全

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)