首页|基于CNN-LSTM的空气质量预报建模方法

基于CNN-LSTM的空气质量预报建模方法

扫码查看
随着人类活动和自然演变,一些物质被排放到大气中并积累到一定浓度,导致大气污染,危害生态环境和健康.因此,建立空气质量预报模型,提前预测和控制大气污染,是改善空气质量的有效方法.该文利用特征工程将空气质量输入数据分为时间类特征和空间类特征,并对其进行分层建模.然后引入CNN-LSTM网络结构,空间类变量作为CNN的输入,经过卷积操作输出的空间类变量和时间类变量作为LSTM的输入,深度挖掘数据的时空特性.实验结果显示模型的效果较好,可扩展性较强,易于探究气象数据的内在关联.
Air Quality Forecasting Modeling MethodBased on CNN-LSTM
With human activities and natural evolution,various substances are emitted into the atmosphere and accumulate to certain concentrations,causing air pollution that harms the ecolog-ical environment and health.Therefore,establishing air quality forecasting models to predict and control air pollution in advance is an effective method to improve air quality.This paper utilizes feature engineering to categorize air quality input data into temporal and spatial features and conducts layered modeling.A CNN-LSTM network structure is then introduced,where spatial variables are input into the CNN,and the spatial variables output by the convolution operations along with the temporal variables are input into the LSTM to deeply explore the spatiotemporal characteristics of the data.Experimental results show that the model performs well,has strong scalability,and is effective in exploring the intrinsic connections within meteorological data.

air qualitypredictive modelingdata mininglong short-term memory networkconvolutional neural network

娄智昊

展开 >

重庆科技大学,重庆 401331

空气质量 预测建模 数据挖掘 长短期记忆网络 卷积神经网络

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)