首页|基于遗传算法与云计算的多源大数据信息挖掘方法

基于遗传算法与云计算的多源大数据信息挖掘方法

扫码查看
传统的数据挖掘方法在面对多源大数据时,往往难以处理其复杂性和规模性,导致挖掘结果的不准确和不完整.因此,通过对基于遗传算法与云计算的多源大数据信息挖掘方法的深入研究和分析,旨在为大数据信息挖掘领域提供新的理论支持和实践指导,推动大数据技术的进一步发展和应用.首先,提取了多源大数据信息的特征,按照评价标准对其进行重要度评价,然后反复筛选直到得到最佳特征子集,其次,通过遗传算法的挖掘任务适应度函数进行了设计,进行大数据信息的全局搜索,从而为大数据的挖掘工作奠定坚实的基础,最后,基于云计算实现了大数据信息的深入挖掘,为数据分析和决策提供有力支持.实验结果:利用云计算平台与遗传算法对多源大数据进行并行处理和分析,显著提高了数据处理速度.与传统的单机处理方式相比,云计算环境下的数据处理时间大大缩短,同时保持了较高的处理质量.
Multi-Source Big Data Information Mining Method Based on Genetic Algorithm and Cloud Computing
Traditional data mining methods are often difficult to deal with multi-source big data,resulting in inaccurate and incomplete mining results.Therefore,through the in-depth research and analysis of multi-source big data information mining methods based on genetic algorithm and cloud computing,it aims to provide new theoretical support and practical guidance for the field of big data information mining,and promote the further development and application of big data technology.First,extract the characteristics of the multi-source big data information,ac-cording to the evaluation criteria,and then repeatedly screening until the best feature subset,sec-ondly,through the genetic algorithm of mining task fitness function design,big data informa-tion global search,to lay a solid foundation for big data mining,finally,based on cloud compu-ting to realize the big data information deep mining,provide strong support for data analysis and decision-making.Experimental results:Cloud computing platform and genetic algorithm were used to process and analyze the multi-source big data in parallel,which significantly improved the data processing speed.Compared with the traditional single-machine processing method,the data processing time in the cloud computing environment is greatly shortened,while maintai-ning a high processing quality.

multi-source big datacloud computinginformation mininggenetic algorithm

谢梦怡

展开 >

泉州信息工程学院,福建泉州 362000

多源大数据 云计算 信息挖掘 遗传算法

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)