首页|基于机器学习的Java代码注入攻击漏洞识别

基于机器学习的Java代码注入攻击漏洞识别

扫码查看
针对现有识别方法在对编程语言(Java Programming Language,Java)代码注入攻击漏洞识别时,存在识别准确率低的问题,文章引入机器学习,开展Java代码注入攻击漏洞识别方法设计研究.汇聚广泛且多样的Java注入语句样本,采集数据,并生成特征量.通过机器学习,实现对Java代码注入语句的判断.通过F1值和准确率,完成Java代码注入攻击漏洞识别预测.实验结果表明:研究的识别方法具备更高的识别准确率,可准确检测Java代码注入攻击漏洞问题,提高网络安全性.
Machine Learning-based Java Code Injection Attack Vulnerability Identification
In response to the problem of low recognition accuracy in identifying vulnerabilities in Java programming language(Java)code injection attacks using existing recognition methods,this article introduces machine learning to conduct research on the design of Java code injection attack vulnerability recognition methods.Gather a wide and diverse sample of Java injection statements,collect data,and generate feature quantities.Through machine learning,achieve the judgment of Java code injection statements.Complete Java code injection vulnerability identifi-cation and prediction through F1 value and accuracy.The experimental results show that the re-search recognition method has higher recognition accuracy,can accurately detect Java code injec-tion attack vulnerabilities,and improve network security.

Machine learningCode injection attackSentence samplesloopholeJava

唐型基、杨光临、柴群

展开 >

凯里学院,贵州 凯里 556011

机器学习 代码注入攻击 语句样本 漏洞 Java

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)