首页|基于生成对抗网络的图像修复技术研究

基于生成对抗网络的图像修复技术研究

扫码查看
生成对抗网络是一种由生成器和判别器组成的深度学习模型,通过相互竞争来提高生成的图像质量.生成器负责产生接近真实的图像,而判别器则尝试区分生成的图像与真实图像,这种结构使GAN特别适合于图像修复技术,可以有效地恢复损坏或不完整的图像.由于其强大的学习能力,GAN已在自然图像编辑、老照片修复等多个领域展示了显著的效果.文章详细探讨了生成对抗网络在图像修复领域的应用,包括网络结构、训练过程以及生成器与判别器的具体设计.通过对比实验验证了本文提出的方法在实时图像修复技术中的有效性,并通过技术测试展示了该技术在实际应用中的潜力和效果.
Research on Image Restoration Technology Based on Generative Adversarial Networks
Generative Adversarial Network is a deep learning model consisting of generators and discriminators,which compete with each other to improve the quality of generated images.The generator is responsible for generating images that are close to reality,while the discriminator at-tempts to distinguish between the generated image and the real image.This structure makes GAN particularly suitable for image restoration techniques,which can effectively restore dam-aged or incomplete images.Due to its powerful learning ability,GAN has demonstrated signifi-cant results in various fields such as natural image editing and old photo restoration.This article discusses in detail the application of generative adversarial networks in the field of image resto-ration,including network structure,training process,and specific design of generators and dis-criminators.The effectiveness of the proposed method in real-time image restoration technology was verified through comparative experiments,and the potential and effectiveness of the tech-nology in practical applications were demonstrated through technical testing.

Generative Adversarial NetworkImage Restoration Technologytechnical study

郭华

展开 >

山西工程科技职业大学,山西 晋中 030619

生成对抗网络 图像修复技术 深度学习

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)