首页|基于改进深度神经网络的无线传感网络隐私数据聚合方法

基于改进深度神经网络的无线传感网络隐私数据聚合方法

扫码查看
在无线传感网络中,数据在传输过程中不能获得全部节点的隐私数据密钥,导致数据恢复率较低,因此设计一种基于改进深度神经网络的无线传感网络隐私数据聚合方法.对无线传感网络的拓扑结构进行全面分析,挑选邻近汇聚节点的节点作为中继节点.利用改进的深度神经网络对无线传感网络进行数据采集,这些网络能够捕获并处理各种环境参数.实验结果表明,设计的基于改进深度神经网络的无线传感网络隐私数据聚合方法,在数据泄露概率为10-4的情况下,数据恢复率高达99.8%,而文献[1]为78.5%,文献[2]为67.2%,显示出在极端情况下设计方法依然能够保持极高的数据恢复率.验证了设计方法在处理无线传感网络数据聚合问题时的有效性.
The Private Data Aggregation Method of Wireless Sensor Networks Based on Improved Deep Neural Networks
In the wireless sensor network,the private data keys of all nodes can not be obtained dur in the transmission process,resulting in low data recovery rate.Therefore,a privacy data ag-gregation method for wireless sensor networks based on improved deep neural network is de-signed.Comprehensive analysis of the topology of the wireless sensing network,and select nodes near the convergence nodes as relay nodes.Using improved deep neural networks for data acqui-sition of wireless sensing networks that can capture and process a variety of environmental pa-rameters.The experimental results show that the designed privacy data aggregation method of wireless sensor network based on improved deep neural network has a data recovery rate of 99.8%with the data leakage probability of 10-4,compared with[1]78.5%and[2]67.2%,showing that the design method can still maintain an extremely high data recovery rate in extreme cases.We verify the effectiveness of the design method in handling the problem of data aggregation in wireless sensing networks.

improve the deep neural networkwireless sensor networkprivacy datadata aggre-gationprivacy key

李祥宇、程帅

展开 >

郑州科技学院信息工程学院,河南郑州 450000

郑州科技学院体育学院,河南郑州 450000

改进深度神经网络 无线传感网络 隐私数据 数据聚合 隐私密钥

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)