首页|基于改进YOLOv8的扶梯行人异常行为检测算法

基于改进YOLOv8的扶梯行人异常行为检测算法

扫码查看
扶梯行人的安全隐患多数源于乘客的异常行为.文章提出了一种基于改进YOLOv8的扶梯行人异常检测算法DEW-YOLOv8.首先为了提高算法的检测效率,在YOLOv8的C2f模块中使用效率更高DSConv模块替代标准卷积模块构成C2f_DSConv模块.其次针对行人在检测图像中所占比例较小引起的易漏检的问题,在特征融合阶段引入ECA注意力模块,弱化背景信息.最后采用WIoU损失函数替代原结构CIoU函数,提高模型的收敛能力.经过实验分析,该文的算法和原始YOLOv8算法相比,mAP@.5提升2.2%,参数量下降13.3%.
Algorithm for Detecting Abnormal Pedestrian Behavior on Escalators Based on Improved YOLOv8
Most of the safety hazards for escalator passengers result from abnormal behaviors of the passengers.This paper proposes an escalator passenger anomaly detection algorithm DEW-YOLOv8 based on the improved YOLOv8.Firstly,to enhance the detection efficiency of the al-gorithm,the standard convolution module in the C2f module of YOLOv8 is replaced by the more efficient DSConv module to form the C2f_DSConv module.Secondly,to address the issue of easy missed detections caused by the small proportion of passengers in the detection image,the ECA attention module is introduced in the feature fusion stage to weaken the background infor-mation.Finally,the WIoU loss function is adopted to replace the original CIoU function to im-prove the convergence ability of the model.Through experimental analysis,compared with the original YOLOv8 algorithm,the mAP@.5 of the algorithm in this paper is increased by 2.2%,and the number of parameters is reduced by 13.3%.

Object DetectionYOLOv8C2f_DSConv ModuleAttention Mechanism

郭家森、梁立振、刘少清

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232001

合肥综合性国家科学中心能源研究院,安徽 合肥2320071

目标检测 YOLOv8 C2f_DSConv模块 注意力机制

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)