首页|基于物联网的智能电力设备监测与诊断技术

基于物联网的智能电力设备监测与诊断技术

扫码查看
由于目前经济发展迅速,社会对于电力能源的需求逐渐增加,保障电力设备的安全性和稳定性成为广泛关注的问题.为了可以实时监测电力设备的运行情况,保证电力的安全性,文章首先构建了智能电力设备状态监测与诊断模型,该模型包括智能感知层、数据通信层、信息集成层和智能应用层.其次,采用新型LPWAN网络架构实时监测电网,运用改进的Viterbi算法精确定位故障点并提高计算速率.最后,根据定位的故障点实时反馈故障信息,实现对电力设备的监测,提升电力设备的安全性.根据实验得出,电力组网的数据量在10MB到300MB之间时,物联网LPWAN监测方法从45ms上升到75ms,且延时减少幅度更大,物联网LPWAN监测方法的准确率比其他方式高了 10%左右,说明物联网相关方法能提高监测与诊断的效率和准确性,保障智能电力设备稳定运行,适合用于电力设备的监测中.
Intelligent Power Equipment Monitoring and Diagnostic Technology Based on the Internet of Things
Due to the rapid development of the economy and the increasing demand for electrici-ty in society,ensuring the safety and stability of power equipment has become a widely con-cerned issue.In order to monitor the operation of power equipment in real time and ensure the safety of electricity,this paper first constructs an intelligent power equipment status monitoring and diagnosis model,which includes an intelligent perception layer,a data communication layer,an information integration layer,and an intelligent application layer.Secondly,a new LPWAN network architecture is adopted for real-time monitoring of the power grid,and an improved Viterbi algorithm is used to accurately locate fault points and improve computation speed.Final-ly,real-time feedback of fault information based on the identified fault points enables monito-ring of power equipment and enhances its safety.According to experiments,when the data vol-ume of power networking is between 10MB and 300MB,the IoT LPWAN monitoring method increases from 45ms to 75ms,and the delay reduction is greater.The accuracy of the IoT LP-WAN monitoring method is about 10%higher than other methods,indicating that IoT related methods can improve the efficiency and accuracy of monitoring and diagnosis,ensure the stable operation of intelligent power equipment,and are suitable for monitoring power equipment.

Internet of ThingsPower equipmentMonitoring technologyDiagnostic technolo-gy

李大全

展开 >

中能拾贝科技有限公司,广东 广州 510000

物联网 电力设备 监测技术 诊断技术

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)