首页|改进EnlightenGAN网络的航拍低照度图像增强方法

改进EnlightenGAN网络的航拍低照度图像增强方法

扫码查看
针对在低光照条件下的航拍图像存在亮度不足、细节模糊不清、噪音等问题,提出了SC-EnlightenGAN网络的图像增强方法.首先使用低照度图像和注意力灰度图作为输入;其次使用添加通道注意力机制和位置信息注意力机制的自正则引导的U-Net网络作为生成器,增强过程中减少噪音并保留更多的图像细节信息;然后使用全局-局部判别器保证了图像整体的亮度;实验结果表明,SC-EnlightenGAN 网络较 EnlightenGAN网络在峰值信噪比指标上平均提高了1.565dB,在结构相似性指标上平均提高了 2%.改进模型可有效提升航拍低照度图像的亮度及主体细节信息.
The Low-Illumination Image Enhancement Methodof Aerial Photography Based on EnlightenGAN Network was Improved
In order to solve the problems of insufficient brightness,blurred details and noise in aerial images under low light conditions,an image enhancement method based on SC-Enlight-enGAN network was proposed.Firstly,low-light images and attention grayscale maps were used as inputs.Secondly,the self-regularized guided U-Net network with channel attention mecha-nism and position information attention mechanism was used as the generator to reduce noise and retain more image details in the enhancement process.Then,a global-local discriminator was used to ensure that the overall brightness of the image was consistent.Experimental results showed that the SC-EnlightenGAN network had an average increase of 1.565dB in the peak sig-nal-to-noise ratio and a 2%increase in the structural similarity index compared with the En-lightenGAN network.The improved model can effectively improve the brightness and subject detail information of aerial low-light images.

Low-light image enhancementLow light imageGenerative adversarial networks

靳以博、王同喜

展开 >

长江大学计算机科学学院,湖北荆州 434020

低照度图像增强 低光图像 生成对抗网络

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)