首页|基于Stacking的设备故障预测方法

基于Stacking的设备故障预测方法

扫码查看
机器设备的连续稳定运行对于保障生产至关重要,而故障预测技术是确保连续运行的关键.为了进一步提升设备故障的预测效果,提出了一种基于Stacking集成学习模型的机器设备故障预测方法——TXL-RF模型.该模型通过融合 TabNet、XGBoost 和 LightGBM三种先进算法的优势,提高机器设备故障预测的准确性.TXL-RF模型通过独立训练三种基学习器,并将它们的预测结果作为特征输入到随机森林模型中,以进行故障风险的综合评估.研究结果表明,TXL-RF模型在F1分数上达到了0.889,准确率为99.38%,不仅保持了与基学习器相当的准确率,还在F1分数上实现了显著提升,证明了模型在综合预测性能上的优势和集成策略的有效性.
Fault Prediction Method for Equipment Based on Stacking
The continuous and stable operation of machinery and equipment was crucial for ensu-ring production,and fault prediction technology was key to maintaining continuous operation.To further enhance the effectiveness of equipment fault prediction,a fault prediction method for machinery based on a Stacking ensemble learning model,called the TXL-RF model,was pro-posed.This model improved the accuracy of machinery fault prediction by integrating the ad-vantages of three advanced algorithms:TabNet,XGBoost,and LightGBM.The TXL-RF model independently trained the three base learners and used their prediction results as feature inputs to a random forest model for comprehensive fault risk assessment.The results showed that the TXL-RF model achieved an F1 score of 0.889 and an accuracy of 99.38%.It not only main-tained accuracy comparable to the base learners but also achieved a significant improvement in the F1 score,demonstrating the model's advantage in comprehensive prediction performance and the effectiveness of the ensemble strategy.

failure predictionensemble learningattention mechanismgradient boostingstac-king

冯群浩、沈碧婷、肖俊

展开 >

广东茂名健康职业学院,广东茂名 525448

国家计算机网络应急技术处理协调中心广东分中心,广东 广州 510665

故障预测 集成学习 注意力机制 梯度提升 堆叠

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)