首页|5G网络中人工智能算法在流量预测和资源调度中的应用

5G网络中人工智能算法在流量预测和资源调度中的应用

扫码查看
5G网络面临许多新的挑战,如数据流量的急剧增加、网络延迟的严格要求等,通过引入人工智能算法,可以更有效地处理这些问题.人工智能可以帮助预测流量模式,从而更有效地分配网络资源,提高网络的整体效率.考虑到先前网络流量预测模型在精度和泛化能力上的不足,文章引入了 5G网络切片技术,结合K-means聚类算法和支持向量机SVM的回归预测模型KM-SVM进行流量预测.首先,使用K-means算法对数据进行聚类,然后利用SVM训练回归模型,以实现对流量数据的预测.然后根据预测结果基于用户优先级的资源调度方法合成切片资源策略.通过精准的流量预测和资源调度,可以确保用户在使用5G网络时获得更稳定、更快速的服务,优化用户体验.
Application of Artificial Intelligence Algorithms in Traffic Prediction and Resource Scheduling in 5G Networks
5G networks face many new challenges,such as the sharp increase in data traffic,the strict requirements of network latency,etc.By introducing artificial intelligence algorithms,these problems can be dealt with more effectively.Ai can help predict traffic patterns,thus allo-cating network resources more efficiently and improving the overall efficiency of the network.Considering the shortcomings of previous network traffic prediction models in accuracy and generalization ability,this paper introduced 5G network slicing technology,combined with K-means clustering algorithm and support vector machine SVM regression prediction model KM-SVM for traffic prediction.First,the K-means algorithm was used to cluster the data,and then SVM was used to train the regression model to achieve the prediction of the traffic data.Then,according to the prediction results,the slicing resource strategy is synthesized based on the re-source scheduling method of user priority.Through accurate traffic prediction and resource scheduling,users can ensure that they get more stable and faster services when using 5G net-works,and optimize user experience.

5G networkArtificial intelligence algorithmFlow forecastResource scheduling

区林波、蔡慈贵

展开 >

广东省电信规划设计院有限公司,广东 广州 510630

5G网络 人工智能算法 流量预测 资源调度

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(12)