首页|3.5价全钒液流电池用电解液研究现状与展望

3.5价全钒液流电池用电解液研究现状与展望

扫码查看
全钒液流电池因其固有的安全性、长达十年以上的服役寿命、适应大规模应用及易于回收利用等优势,作为最具应用前景的大规模储能技术得到空前发展,预计到2030年国内全钒液流电池新增装机规模将达到93 GWh.钒电池主要由电解液、电堆和输送系统构成,电解液成本占电池总成本40%以上,其低成本高效制备技术是钒电池大规模商业化发展的关键.钒电解液的主要制备方法包括化学还原法、电解法、溶剂萃取法和离子交换法等.化学还原法是以V2O5和钒酸铵为原料经化学还原制备获得电解液的,工艺成熟,但存在还原剂残留和原料成本较高的问题;电解法工艺流程短,但整体能耗高,电解效率低;离子交换法和溶剂萃取法通常以含钒浸出液为原料,无需经过钒产品制备环节,但流程仍较为繁琐,且难以直接获得3.5价钒电解液.总结归纳了近年来3.5价钒电解液的制备方法,概括了各种方法的原理、工艺流程以及优缺点,以期为3.5价钒电解液制备新技术的开发提供参考.
RESEARCH STATUS AND PROSPECT OF ELECTROLYTES FOR 3.5 VALENCE ALL-VANADIUM FLOW BATTERIES
Vanadium flow battery due to its inherent safety,more than 10 years of service life,adaptable to large-scale applications and easy recycling advantages,as the most promising large-scale energy storage technology has been unprecedented developed,it is expected that by 2030 the domestic total vanadium flow battery installed capacity will reach 93 GWh.Vanadium battery is mainly composed of electrolyte,stack and conveying system,electrolyte cost accounts for more than 40%of the total cost of the battery,its low-cost and efficient preparation technology is the key to the large-scale commercial development of vanadium battery.The main preparation methods of vanadium electrolyte include chemical reduction method,electrolysis method,solvent extraction method and ion exchange method.The chemical reduction method is based on the chemical reduction of V2O5 and ammonium vanadate as raw materials to prepare the electrolyte.The process is mature,but there are some problems such as reducing agent residue and high raw material cost.The electrolysis process is short,but the overall energy consumption is high and the electrolytic efficiency is low.Ion exchange method and solvent extraction method usually use vanadium containing leaching solution as raw material,without vanadium product preparation,but the process is still complicated,and it is difficult to directly obtain 3.5 valence vanadium electrolyte.The preparation methods of 3.5 valence electrolyte in recent years were summarized,the principle,process flow and advantages and disadvantages of each method were summarized,in order to provide reference for the development of new preparation technology of 3.5 valence electrolyte.

all-vanadium flow battery3.5 valencevanadium electrolytelarge-scale energy storagechemical reductionelectrolysis

王程、王少娜、祁健、李兰杰、白丽、杜浩

展开 >

中国科学院大学,北京 100049

中国科学院过程工程研究所战略金属资源绿色循环利用国家工程研究中心,北京 100190

承德钒钛新材料有限公司,河北承德 067102

全钒液流电池 3.5价 钒电解液 大规模储能 化学还原 电解

河北省重大科技成果转化专项河钢集团重点科技项目

23284401ZHG2022111

2024

河北冶金
河北省冶金学会

河北冶金

影响因子:0.124
ISSN:1006-5008
年,卷(期):2024.(9)