首页|基于图网络的船舶柴油机健康监测

基于图网络的船舶柴油机健康监测

扫码查看
为实现船舶柴油机的智能健康监测,本文提出了一种双图采样的图网络归纳式学习算法(Dual-GraphSAINT).为充分挖掘柴油机振动信号中的潜在信息,分别基于局部与全局一致性假设,对振动信号和故障状态构造邻接图.通过邻接图内数据之间的连接关系对节点状态进行学习,以准确的挖掘出柴油机运行过程中的潜在故障信息.同时Dual-Graph-SAINT是一种归纳式学习算法,突破了传统图网络不能对未见节点生成有效嵌入表征的弊端,实现了对柴油机健康状态实时检测的性能.文中所提出的健康监测方案与传统的数据驱动和深度学习方案进行比较,获得了最佳的性能,显著提高了船舶柴油机的健康监测效果.
Health monitoring of marine diesel engine based on graph network
In order to realize the intelligent condition monitoring of marine diesel engines,the graph network al-gorithm is introduced.In this paper,a dual graph sampling graph network inductive learning algorithm(Dual-GraphSAINT)is proposed for diesel engine health monitoring.Firstly,in order to fully mine the potential infor-mation in the diesel engine vibration signal,the adjacency graph is constructed for the vibration signal and fault state based on the local and global consistency assumptions respectively.Then,the node state is learned based on the connection relationship between the data based on the double adjacency graph,so as to accurately monitor the potential health state during the operation of the diesel engine.At the same time,Dual-GraphSAINT is an in-ductive learning algorithm,which breaks through the disadvantage that the traditional graph network cannot gen-erate an effective embedded representation of unknown nodes,so it can analyze the health state of diesel engine in real time.The proposed health monitoring scheme obtained the best performance compared with the traditional data-driven and deep learning schemes.The health monitoring performance of the marine diesel engine is signifi-cantly improved.

diesel enginehealth monitoringgraph convolution network

熊正华、尚前明、杨安声、杜红成

展开 >

四川交通职业技术学院,成都 611130

武汉理工大学能源与动力工程学院,武汉 430063

四川城市技师学院,成都 610000

柴油机 健康监测 图网络

四川交通职业技术学院教学改革项目

2023-JG-46

2024

江苏科技大学学报(自然科学版)
江苏科技大学

江苏科技大学学报(自然科学版)

影响因子:0.373
ISSN:1673-4807
年,卷(期):2024.38(1)
  • 19