首页|双视角数据下移动应用BUG报告识别方法研究

双视角数据下移动应用BUG报告识别方法研究

扫码查看
为了快速而准确地识别其中的BUG报告将有助于开发人员对移动应用进行修复,通过调查移动应用运行的不同阶段,以用户反馈和问题报告两个视角为切入点,提出基于深度学习的移动应用BUG报告自动识别方法,即首先使用Word2Vec获取词向量,其次,构建Bi-LSTM网络获取高级文本特征,并通过注意力机制分配权重以捕获句子中对BUG报告识别起到关键作用的信息,最后获取问题报告的BUG标签.实验结果表明所提方法在准确率、召回率、F1-score和查准率上均有提高,有助于开发人员准确识别移动应用的BUG报告,提高BUG修复效率.
Research on mobile APP BUG report recognition method by dual-perspective data
Identifying the BUG reports quickly and accurately will help developers to repair mobile applications.Therefore,we propose an automatic identification method of mobile application bug reports based on deep learn-ing by investigating the different stages of mobile application operation and taking user reviews and issue reports as the starting points.Firstly,Word2Vec is used to get word vectors;secondly,a Bi-LSTM network is construc-ted to obtain high-level text features.Furthermore,we assign the weight through the attention mechanism to cap-ture the information in the sentence that plays a key role in the identification of the bug reports.Finally we get the bug label of the issue report.Our method is better than the methods proposed in previous works in terms of rate,and this study expounds the impact of datasets from different perspectives on mobile application BUG report identification,which helps developers to identify mobile application BUG reports accurately and improve the effi-ciency of BUG repair.

mobile applicationsoftware maintenanceissue reportuser reviewBUG label

彭春雨、郑尚、邹海涛、于化龙、高尚

展开 >

江苏科技大学计算机学院,镇江 212100

移动应用 软件维护 问题报告 用户反馈 BUG标签

国家自然科学基金

62176107

2024

江苏科技大学学报(自然科学版)
江苏科技大学

江苏科技大学学报(自然科学版)

影响因子:0.373
ISSN:1673-4807
年,卷(期):2024.38(1)
  • 19