首页|深度融合内容和隐式反馈的跨域推荐算法

深度融合内容和隐式反馈的跨域推荐算法

扫码查看
针对现有的大多数跨域推荐方法仅仅使用了源域的评分信息和部分辅助信息,并未充分使用包括隐式反馈信息在内的其它辅助信息,文中提出了一种融合多种辅助信息的跨域推荐算法,以充分使用隐式反馈信息和内容信息来提升跨域推荐方法的性能.在对堆叠降噪自动编码器(stacked denoising autoencoder,SDAE)进行扩展的基础上,结合矩阵分解(ma-trix factorization,MF)方法,同时融合了源域的评分信息、用户和项目的内容信息以及隐式反馈信息,丰富了用户和项目潜在特征的语义信息.采用基于密码本的知识迁移方法和非完备正交非负矩阵三分解方法,设计了适用于评分信息和多类型辅助信息综合运用的跨域协同过滤框架.实际数据集上的实验结果表明,该方法在改善推荐性能,减少用户厌恶推荐结果方面有着良好的效果.
Cross-domain recommendation algorithm based on deep fusion of content and implicit feedback
Most of the existing cross-domain recommendation methods use only the rating information and some side information from the source domain,and the other side information including implicit feedback information can not be adopted.Therefore,a cross-domain recommendation algorithm which integrate multiple side informa-tion including implicit feedback information and content information is proposed to improve the performance of cross-domain recommendation methods.Based on the expansion of stacked denoising autoencoder(SDAE),combing with matrix factorization(MF)method and fusing the rating information of the source domain,the con-tent information of users and projects and implicit feedback information are also integrated in the method.On this basis,the cross-domain collaborative filtering framework suitable for the comprehensive application of rating in-formation and multi type side information is designed.In order to effectively transfer the source domain informa-tion,both the codebook-based knowledge transfer method and the incomplete orthogonal nonnegative matrix tri-factorization method are adopted in this framework.The experimental results on the actual data set show that this method has a good effect in improving the recommendation performance and reducing users'aversion to the rec-ommendation results.

side informationimplicit feedbackmatrix factorizationcross-domain recommendation

陆永倩、於跃成、生佳根、李慧、许梦瑶

展开 >

江苏科技大学计算机学院,镇江 212100

辅助信息 隐式反馈 矩阵分解 跨域推荐

国家自然科学基金江苏省研究生创新项目

61806087SJCX20_1475

2024

江苏科技大学学报(自然科学版)
江苏科技大学

江苏科技大学学报(自然科学版)

影响因子:0.373
ISSN:1673-4807
年,卷(期):2024.38(1)
  • 15