江苏科技大学学报(自然科学版)2024,Vol.38Issue(1) :82-88.DOI:10.20061/j.issn.1673-4807.2024.01.013

融合ECA的多分支多损失行人重识别

Multi-branch and multi-loss person re-identification integrating efficient channel attention

王卫东 徐金慧 张志峰
江苏科技大学学报(自然科学版)2024,Vol.38Issue(1) :82-88.DOI:10.20061/j.issn.1673-4807.2024.01.013

融合ECA的多分支多损失行人重识别

Multi-branch and multi-loss person re-identification integrating efficient channel attention

王卫东 1徐金慧 1张志峰1
扫码查看

作者信息

  • 1. 江苏科技大学计算机学院,镇江 212100
  • 折叠

摘要

针对现有行人特征提取方法的不足,提出了一种融合ECA的多分支多损失行人重识别方法.首先,将轻量级ECA注意力模块嵌入到骨干网络ResNet50 中,以增强显著特征,抑制无关特征.其次,设计了一个多分支网络结构分别提取行人的全局特征和局部特征,针对不同的特征采取不同的多池化特征提取方式,增强网络的特征提取能力.最后,联合三种损失函数对模型进行训练,并采用BNNeck进行优化,从而提高模型的鲁棒性.在Market1501 和DukeMTMC-reID数据集上的实验表明,所提方法具有较好的效果,在识别精度上也优于较多的经典算法.

Abstract

Aiming at overcoming the shortcomings of the existing person feature extraction methods,we propose a multi-branch and multi-loss person re-identification method fused with ECA.Firstly,the lightweight ECA atten-tion module is embedded in the backbone network ResNet50 to enhance salient features and suppress irrelevant features.Secondly,a multi-branch network structure is designed to extract the global and local features of per-son,and different multi-pool feature extraction methods are adopted for different features to enhance the feature extraction ability of the network.Finally,the three types of loss functions are combined to train the model,and BNNeck is used for optimization,so as to improve the robustness of the model.Experiments on Market1501 and DukeMTMC-reID datasets show that the method proposed in this paper has better results and is better than many classic algorithms in recognition accuracy.

关键词

行人重识别/ECA注意力模块/多分支特征/多损失联合

Key words

person re-identification/ECA attention module/multi-branch feature/multi-loss combination

引用本文复制引用

基金项目

国家自然科学基金(62076111)

出版年

2024
江苏科技大学学报(自然科学版)
江苏科技大学

江苏科技大学学报(自然科学版)

影响因子:0.373
ISSN:1673-4807
参考文献量15
段落导航相关论文