首页|一种深度学习结合后处理的车道线检测方法

一种深度学习结合后处理的车道线检测方法

扫码查看
近年来随着深度学习技术在图像识别、图像处理等领域取得了显著的进展,使得无人驾驶技术中的环境感知成为可能.结合现有的深度学习技术研究复杂的交通场景中实时车道识别,提出了一种基于深度学习语义分割算法结合后处理的车道线检测方法.对EfficientNetV2网络进行卷积结构优化,并引入了双分支共享低级特征的信息融合结构,使其适应语义分割任务,同时,设计一种新的多尺度卷积融合模块,将该模块作为加强特征提取结构,进一步提出车道线识别网络Eff-SCNN,最后对识别结果进行后处理以检测车道线实例.实验结果表明该方法能够在不同的交通场景中正确预测车道线.
Lane detection method based on deep learning combined with post-processing
In recent years,deep learning technology has made remarkable progress in image recognition,image processing and other fields,making it possible to perceive the environment in driverless technology.Combined with the existing deep learning technology,the corresponding research on the realization of real-time lane line recogni-tion in complex traffic scenes is carried out,and a lane line detection method based on deep learning semantic seg-mentation algorithm combined with post-processing is proposed.This paper optimizes the convolutional structure of the EfficientNetV2 network,and introduces an information fusion structure with dual branches sharing low-level features to make it suitable for semantic segmentation tasks.At the same time,a new multiscale convolution fusion module is designed,which is used as an enhanced feature extraction structure,and a lane line recognition network Eff-SCNN is further proposed.Finally,the recognition results are post processed to detect lane line instances.Ex-perimental results show that the method can correctly predict lane lines in different traffic scenarios.

driverlessdeep learningsemantic segmentationEfficientNetV2lane detection

刘卫康、刘昱杉、刘庆华、张鸿鑫

展开 >

江苏科技大学计算机学院,镇江 212100

无人驾驶 深度学习 语义分割 EfficientNetV2 车道线检测

2024

江苏科技大学学报(自然科学版)
江苏科技大学

江苏科技大学学报(自然科学版)

影响因子:0.373
ISSN:1673-4807
年,卷(期):2024.38(2)