江苏科技大学学报(自然科学版)2024,Vol.38Issue(2) :101-108.DOI:10.20061/j.issn.1673-4807.2024.02.016

一类弱监督数据中多视角扰动的特征选择方法

Feature selection via multi-view perturbation in a type of weakly supervised data

郭启航 王平心 杜亮 杨习贝 钱宇华
江苏科技大学学报(自然科学版)2024,Vol.38Issue(2) :101-108.DOI:10.20061/j.issn.1673-4807.2024.02.016

一类弱监督数据中多视角扰动的特征选择方法

Feature selection via multi-view perturbation in a type of weakly supervised data

郭启航 1王平心 2杜亮 3杨习贝 4钱宇华3
扫码查看

作者信息

  • 1. 江苏科技大学计算机学院,镇江 212100
  • 2. 江苏科技大学理学院,镇江 212100
  • 3. 山西大学大数据科学与产业研究院,太原 030006;山西大学计算机与信息技术学院,太原 030006
  • 4. 江苏科技大学计算机学院,镇江 212100;江苏科技大学经济管理学院,镇江 212100
  • 折叠

摘要

弱标签消歧技术可以用来消除数据中的噪声标签.然而,经由弱标签消歧后的数据中依然可能存在冗余或不相关特征,因此带来了弱监督数据中的特征选择这一实际问题.在弱标签消歧后得到的数据的基础上,提出了一种基于多视角扰动的特征选择框架,其能够分别从样本和特征多个视角出发,构造不同的扰动数据,以便求解出多个不同的特征选择结果,从而为后续的学习任务提供基础性集成工具.此外,所提的多视角扰动特征选择框架适用于不同类型、不同约束下的搜索进程.在12组高维数据上,通过注入5种不同比例的标签噪声和使用3种不同类型的特征度量准则,实验结果表明,所提方法求得的特征选择结果能够从准确率和稳定性的层面极大地提升分类性能.

Abstract

Technique of disambiguation of weak labels can be used to remove noisy labels for samples from data.However,redundant or irrelevant features may also be observed after disambiguation of weak labels,so the prob-lem of feature selection should be paid much attention to in weakly supervised data.On the basis of the data with disambiguation of weak labels,a general feature selection framework via multi-view perturbation is developed,which can construct different perturbed data from both the levels of sample and feature.Consequently,multiple results of feature selection can be obtained,which provide a basic integration tool for the subsequent learning.The proposed framework can be applied to various forms and constraints of searching.On more than 12 sets of high-dimensional data,by injecting 5 ratios of label noise and using 3 criteria of feature evaluation,the experi-mental results demonstrate that the feature selection results obtained by our proposed method can significantly im-prove the classification performance from both the aspects of classification accuracy and classification stability.

关键词

特征选择/多视角/粗糙集/超集学习/弱监督

Key words

feature selection/multiple-view/rough set/superset learning/weak supervision

引用本文复制引用

出版年

2024
江苏科技大学学报(自然科学版)
江苏科技大学

江苏科技大学学报(自然科学版)

影响因子:0.373
ISSN:1673-4807
段落导航相关论文