首页|基于改进GAN的路面病害图像数据增强

基于改进GAN的路面病害图像数据增强

扫码查看
路面病害数据具有丰富的空间信息且具备的特征信息关联性较高,针对现有的图像数据增强方法难以有效捕获此类信息的问题,提出了一种改进的生成对抗网络(CLSGAN),用于路面病害数据增强.首先,为了避免出现模式崩塌,保证生成图像的多样性,引入新损失项,重新构建了生成器的目标函数.其次,融合CAE的编码结构,使模型能获取真实图片的空间潜在信息,用于强化生成器对于图像空间信息的学习,提高模型的收敛速度与生成质量.最后,构建了轻量级的残差投影-扩展-投影-扩展模块(RPEPX)并引入谱归一化,进一步提升生成图像的质量并保证模型训练时的稳定性.实验在新建立的CSGP数据集上进行,结果表示CLSGAN对生成路面裂缝与凹陷图像各个评价指标FID,SSIM,PSNR都有较大的提升.最后利用Yolov5s检测网络验证文中方法的先进性,结果表明在小样本数据集的情况下,相对于传统数据增强方法,所提方法使检测结果达到最优.
Enhancement of pavement disease image data set based on improved GAN
The pavement disease data has rich spatial information and high correlation of feature information,while the existing image data enhancement methods are difficult to make the model capture such information ef-fectively.In this paper,an improved generative countermeasure network(CLSGAN)is proposed for pavement disease data enhancement.First,in order to avoid pattern collapse and ensure the diversity of generated images,a new loss term is introduced to reconstruct the objective function of the generator.Secondly,by integrating the coding structure of CAE,the model can obtain the spatial potential information of real pictures,which is used to strengthen the generator's learning of image spatial information,and improve the convergence speed and genera-tion quality of the model.Finally,a lightweight residual projection expansion projection expansion module(RPEPX)is constructed and spectral normalization is introduced to further improve the quality of the generated image and ensure the stability of the model during training.The experiment was carried out on the newly estab-lished CSGP data set,and the results showed that CLSGAN had a greater improvement in the evaluation indexes FID,SSIM,PSNR of the generated pavement crack and depression images.Finally,Yolov5s detection network is used to verify the progressiveness of this method.The results show that in the case of small sample data sets,compared with traditional data enhancement methods,this method achieves the optimal detection results.

data enhancementGANencoderspectral normalizationRPEPX

赵新旭、张博熠、钱慧敏、刘庆华

展开 >

江苏科技大学自动化学院,镇江 212100

江苏科技大学计算机学院,镇江 212100

数据增强 生成对抗网络 编码器 谱归一化 RPEPX

国家自然科学基金项目江苏省六大高峰人才项目

51008143XYDXX-117

2024

江苏科技大学学报(自然科学版)
江苏科技大学

江苏科技大学学报(自然科学版)

影响因子:0.373
ISSN:1673-4807
年,卷(期):2024.38(4)