首页|船舶冰区航行阻力预估法中人工神经网络的应用

船舶冰区航行阻力预估法中人工神经网络的应用

扫码查看
为保障极地冰区航行船舶的安全,冰阻力精准预估作用重大.近年来,人工神经网络(artifical neural network,ANN)机器学习在船舶领域得到了广泛应用.利用机器学习法设计一个预估极地船舶航行冰阻力模型,参照已有的经验公式,选取高质量特征参数进行输入,经过充分船舶模型实验数据演练此模型神经网络,以建立径向基(radial basis function,RBF)神经网络模型为基础,运用遗传计算法(genetic algorithm,GA)对模型优化处理.研究结果表明,以输入的7个高质量特征参数进行的遗传计算法,对径向基的神经网络(RBF-GA)模型进行优化的效果具有较强的泛化作用,与实船实验数据比对模型实验数据,证明其平均误差不大于8%,其精度较高的特点,可应用于冰阻力预估实操工作.
Application of artificial neural network in the prediction method of ship navigation resistance in ice areas
In order to ensure the safety of ships sailing in polar ice regions,accurate prediction of ice resistance plays an important role.In recent years,artificial neural network(ANN)machine learning has been widely used in the field of ships.In this study,the machine learning method is used to design a model to predict the ice re-sistance of polar ships.With reference to the existing empirical formula,high-quality characteristic parameters are selected for input,and the model neural network is drilled by sufficient ship model experimental data.Based on the establishment of radial basis function(RBF)neural network model,genetic algorithm(GA)is used to optimize the model.The research results show that the genetic algorithm based on the input seven high-quality characteristic parameters has a strong generalization effect on the optimization of the radial basis neural network(RBF-GA)model.Compared with the real ship experimental data,it is proved that the average error is less than 8%,and its high accuracy can be applied to the prediction of ice resistance.

polar regionship navigationice resistancegenetic algorithmradial basis function neural net-workship model experiment

李成海、辛小辰、刘树锋、俞启军、胡甚平

展开 >

山东交通职业学院航海系,潍坊 261206

自然资源部第一海洋研究所,青岛 266100

上海海事大学商船学院,上海 201306

极地地区 船舶航行 冰阻力 遗传计算法 径向基神经网络 船舶模型实验

2024

江苏科技大学学报(自然科学版)
江苏科技大学

江苏科技大学学报(自然科学版)

影响因子:0.373
ISSN:1673-4807
年,卷(期):2024.38(6)