首页|基于GA-BP神经网络的焊接接头力学性能预测

基于GA-BP神经网络的焊接接头力学性能预测

扫码查看
焊接工艺参数是影响焊接接头力学性能的主要因素,而制定焊接工艺是一项非常繁杂的工作.将机器学习引入焊接领域,利用神经网络算法来预测焊接接头的力学性能可以辅助焊接工艺的制定.由于预测焊接接头力学性能的模型需要较高的精确度,所以文中提出了一种通过遗传算法优化BP神经网络的方法.其模型选择焊接工艺参数作为输入,接头抗拉强度作为输出.实验结果表明,经遗传算法优化后的神经网络模型表现更优,误差在±0.25以内,可辅助焊接工艺的设计和优化.
Prediction of mechanical properties of welded joints based on GA-BP neural network
Welding process parameters are the main factor affecting the mechanical properties of welded joints,and developing welding processes is a very complex task.Introducing machine learning into the field of welding and using neural network algorithms to predict the mechanical properties of welded joints can assist the formula-tion of welding processes.Due to the high accuracy required for predicting the mechanical properties of welded joints,this paper proposes a method for optimizing BP neural networks through genetic algorithms.The model se-lects the welding process parameters as input and the joint tensile strength as output.The experimental results show that the neural network model optimized by genetic algorithm performs better with an error of±0.25%,which can assist in the design and optimization of welding processes.

prediction of mechanical properties of welded jointsgenetic algorithmBP neural networkmodel optimization

周方明、谢书宛、杨志东、孙宏伟、方臣富

展开 >

江苏科技大学江苏省先进焊接技术重点实验室,镇江 212100

江苏自动化研究所,连云港 222006

焊接接头力学性能预测 遗传算法 BP神经网络 模型优化

2024

江苏科技大学学报(自然科学版)
江苏科技大学

江苏科技大学学报(自然科学版)

影响因子:0.373
ISSN:1673-4807
年,卷(期):2024.38(6)