首页|基于改进Elman神经网络的风速预测

基于改进Elman神经网络的风速预测

扫码查看
指出风速预测对并网风力发电系统的运行有重要意义。为提高风速预测精度,提出了一种基于改进的Elman神经网络风速预测方法,利用误差反向传播的方法来确定反馈增益γ值。分别采用改进Elman神经网络与BP神经网络建立模型,对实际历史风速数据进行仿真预测。利用风电厂实际数据验证,并阐述了仿真结果。
Wind Speed Forecast Based on Improved Elman Neural Network
Wind speed forecast is of significance for the operation of grid-connected wind power generation systems. In order to improve the forecast precision, a method based on improved Elman neural network is proposed, where back propagation method is used to confirm the value of Feedback gains/. The forecast model is established by using im- proved Elman neural network and BP neural network respectively, and applied to simulate and forecast the real histor- ical wind speed data. The actual data of wind plant has verified the simulation results.

Elman neural networkwind speed forecastingforecasting modelBP neural network

张超、常太华、刘欢、胡阳

展开 >

华北电力大学控制与计算机工程学院,北京102206

Elman神经网络 风速预测 预测模型 BP神经网络

国家自然科学基金重点项目

51036002

2012

华东电力
华东电力试验研究院有限公司

华东电力

CSTPCD北大核心
影响因子:0.551
ISSN:1001-9529
年,卷(期):2012.40(8)
  • 6
  • 2