首页|贝叶斯目标跟踪技术在变电站作业管控中的应用研究

贝叶斯目标跟踪技术在变电站作业管控中的应用研究

扫码查看
通过调用变电站视频监控系统数据,在视频画面中捕捉移动物体,利用目标跟踪技术,可以实现变电站作业安全管控.提出了一种基于贝叶斯原理的目标跟踪技术.采用多个局部图像特征如灰度、方向梯度与局部二值模式描述目标外观,基于分批增量判别分析,动态融合多种特征,实现目标与背景的最优分离.通过进化算子迭代重采样实现有效粒子数的最大化,从而保持粒子多样性,实现稳定跟踪.对成都220 kV变电站的目标跟踪实验结果表明,此方法对背景光照、目标姿态变化及局部被遮挡等情况跟踪稳定性良好,此跟踪技术可以很好地应用于变电站作业管控中.
Application of Bayesian Object Tracking in Substation Job Safety Management
By reading the data from substation video surveillance system and locating the moving objects in the video footage,the object tracking technology can be applied to realize substation job safety management.This paper proposes the object tracking technology based on Bayesian principles.Thereby,describe the target appearance with multiple local image features such as gray,direction gradient and local binary pattern; dynamically fuse multiple features based on chunk incremental discriminant analysis; achieve the optimal separation of target and background.Moreover,apply iterative evolution operator resampling to maximize the number of effective particles in order to maintain the diversity of particles and achieve stable tracking.The target tracking experiments on Chengdu 220 kV substation show that this method is superior in tracking stability in the case of background illumination,target attitude change and partial occlusions,quite applicable to substation job safety management.

object trackinglocal image feature descriptionchunk incremental discriminant analysisfeature fusionsubstation job safety management

肖行诠、徐亮、吴天明、杨伟群

展开 >

国网四川省电力公司信息通信公司,成都610041

上海申瑞电网控制系统有限公司,上海200000

目标跟踪 局部图像特征描述 分批增量判别分析 特征融合 变电站作业管控

2014

华东电力
华东电力试验研究院有限公司

华东电力

CSTPCD
影响因子:0.551
ISSN:1001-9529
年,卷(期):2014.42(3)
  • 3
  • 13