首页|针对非技术性损失的智能用电异常检测方法

针对非技术性损失的智能用电异常检测方法

扫码查看
非技术性损失已经成为影响电力公司收益和电能质量的重要因素.提出了一个基于不同用户类型的含离线参数优选和在线异常检测的非技术性损失检测方法.错分训练样本后,可以得出用户异常的实时检测结果,同时随着历史数据的更新,使检测率在运行过程中逐渐达到最优.选取支持向量机算法进行异常检测,并通过遗传算法求出针对不同用户的最优参数,以提高用户的异常检测率.在具体算例中,实时检测系统通过对检测准确率和异常误检率指标的评估,验证该检测方法在周期更新中的性能稳定性和降低电力公司成本方面的优势.
Abnormity Detection Method of Intelligent Electricity Consumption for Nontechnical Loss
Nontechnical loss has been a significant factor influencing the profits of electric power companies and the power quality.A method of nontechnical loss detection based on customer types is proposed in this paper,including offline parameter optimization and online detection.Once the training data are determined,the real time abnormal behaviors would be tested out.With the updating of historical data,the detection accuracy gets higher till the optimal point.In this paper,support vector machine is adopted to detect the nontechnical loss and genetic algorithm is used to derive the optimal parameters for different users to improve user's nontechnical loss detection accuracy.Finally,in the case study,the real-time detection system assesses the classification accuracy and fault detection accuracy,verifying the stability of this method in periodic updating and advantages in reducing the cost of electric power companies.

nontechnical lossreal time detectionparameter optimization

刘杰、侯跃斌、刘念

展开 >

华北电力大学电气与电子工程学院,北京102206

国网上海市电力公司浦东供电公司,上海200122

非技术性电能损失 用电异常检测 支持向量机算法

国家自然科学基金

51007022

2014

华东电力
华东电力试验研究院有限公司

华东电力

CSTPCD
影响因子:0.551
ISSN:1001-9529
年,卷(期):2014.42(4)
  • 4
  • 2