首页|基于云模型的线性网络二级电压控制分区及中枢点识别

基于云模型的线性网络二级电压控制分区及中枢点识别

扫码查看
提出了利用云模型并以线性网络中节点电压实部与节点注入电流无功部分之间的线性灵敏度为基础实现二级电压控制分区.提出了考虑优化对象预处理的中枢母线优化选择方法,并由人工智能优化算法实现.把每个待分区负荷节点从无功源控制空间经云运算形成对应云滴,通过概念提升,由云模型的模糊性与随机性解决了电压分区的软划分问题.将节点负荷权重与可控性相结合进行优化预处理并由改进粒子群算法实现,增强了优化结果的可信度,提高了全局寻优的效率.经IEEE 39节点输电网络仿真测试,验证了所提方法的有效性.
Linear Network Secondary Voltage Control Partition and Pilot Bus Identification Based on Cloud Model
Secondary voltage control partition is proposed to be performed using cloud model and based on the linear sensitivity between the real part of linear network pilot bus node voltage and the reactive part of node injection current.The central bus optimization selection method considering optimal objecct pretreatment is presented and realized by the artificial intelligence optimization algorithm.Every partition load node is transformed into the corresponding cloud droplets from the reactive power control space by cloud computing.The fuzziness and randomness of cloud model is employed to solved the soft voltage partition.The node load weight and controllability are combined for the optimized pretreatment and the treatment is realized by the improved particle swarm algorithm,improving the credibility of the optimized results and enhancing the efficiency of the global optimization.IEEE39 node transmission network simulation test results verify the effectiveness of the proposed method.

cloud modellinear networkvoltage partitioncentral busparticle swarm algorithm

成煜、杭乃善、苏毅、黄珑、韩靖华

展开 >

广西大学电气工程学院,南宁 530004

云模型 线性网络 电压分区 中枢母线 粒子群算法

国家自然科学基金广西研究生教育创新计划资助项目

51277034YCSZ2012026

2014

华东电力
华东电力试验研究院有限公司

华东电力

CSTPCD
影响因子:0.551
ISSN:1001-9529
年,卷(期):2014.42(5)
  • 2
  • 9