首页|强化Q学习——模糊多目标AGC调节容量动态优化分配策略的研究

强化Q学习——模糊多目标AGC调节容量动态优化分配策略的研究

扫码查看
针对AGC调节容量多目标优化分配存在着无法完全描述机组特性的问题,通过研究提出采用基于强化Q学习的优化分配方法.将AGC系统视为“不确定的随机系统”,结合ACE的调节死区以及CPS评价标准,建立了AGC调节容量优化分配问题的马尔可夫决策过程模型,并引入Q学习方法对MDP的最优值函数进行学习,仿真结果表明,该强化Q学习-模糊多目标AGC调节容量动态优化分配策略能够适应电网环境变化的要求.
Dynamic Optimized Allocation Policy for AGC Regulation Capacity Based on Reinforcement Q-Learning and Fuzzy Multiple Objectives
The unit characteristics can't be fully described in the multi-objective optimized allocation of AGC regulation capacity; therefore,this paper proposes the optimal allocation approach based on the reinforcement Q-learning.With AGC system,the "uncertain stochastic system",combined with the ACE adjusting dead zone and CPS evaluation standard,the Markov decision process (MDP) model is established for optimized allocation of AGC regulation power; the Q-learning approach is introduced to study MDP's optimal value function.The simulation results show that the proposed allocation strategy can adapt to the changing requirement of grid environment.

AGCreinforcement Q-learning algorithmdynamic optimized allocation of regulation capacity

钱虹、姚一鸣、陈丹、费敏锐

展开 >

上海电力学院,上海 200090

上海大学,上海 200072

北京工商大学,北京 100037

自动发电控制 强化Q学习算法 调节容量动态优化分配

2014

华东电力
华东电力试验研究院有限公司

华东电力

CSTPCD
影响因子:0.551
ISSN:1001-9529
年,卷(期):2014.42(5)
  • 2
  • 5