首页|基于à Trous小波变换与多核SVM的电力短期负荷预测方法

基于à Trous小波变换与多核SVM的电力短期负荷预测方法

扫码查看
提出了一种基于à Trous小波变换与多核SVM的电力短期负荷预测方法.应用à Trous小波变换将负荷时间序列分解为近似分量和细节分量,并选择不同尺度核的SVM对分解后的数据进行预测,然后将预测后的数据进行合成,得到多尺度负荷预测结果.运用该方法对实际负荷数据进行了1步预测和2步预测,数据实验表明,最大的RMSE误差为1.82,与标准BP神经网络相比,文中所提方法具有更高的预测精度和更好的泛化能力.
Short-Term Load Forecast Method Based on à Trous Wavelet Transform and Multiple Kernels SVM
A method for short-term load forecast based on à Trous wavelet transform and multiple kernels SVM is presented in this paper.The à Trous wavelet transform is applied to discompose the load time series into approximate components and detailed components; the multiple kernels SVM is chosen to forecast the discomposed data.The multi-scale load forecasting results are obtained by synthetizing the forecasted data.The model is applied to 1-step and 2-step forecasting of actual load data.The experimental results show that the maximum error of RMSE is 1.82.In comparison with the standard BP neural network,the proposed method has higher prediction accuracy and better generalization ability.

load forecastà Trous wavelet transformmultiple kernels SVMBP neural network

吴月红

展开 >

广东电网公司佛山供电局,广东佛山528100

负荷预测 à Trous小波变换 多核支持向量机 BP神经网络

2014

华东电力
华东电力试验研究院有限公司

华东电力

CSTPCD
影响因子:0.551
ISSN:1001-9529
年,卷(期):2014.42(9)
  • 3