首页|分布式发电系统中机器学习实时应用

分布式发电系统中机器学习实时应用

扫码查看
提出聚类采样预处理和集成分类器的方法来应对含概念漂移的分布式发电孤岛检测问题.首先提出利用聚类算法对电气信息进行预处理和再采样.然后分析了单一分类器的归纳偏置现象,提出利用集成分类器的互补性提高孤岛检测的准确率.仿真算例中充分考虑了功率不平衡度,本地负荷扰动等因素.实验结果表明,上述两个环节对提高分布式发电孤岛检测的精度和泛化能力具有重要作用.
Real-Time Application of Machine Learning in Distributed Generation System
This paper proposes a comprehensive approach to deal with islanding detection problem of distributed generation with concept drift by means of cluster sampling preprocessing and ensemble classifiers First,it proposes using clustering method to do preprocessing and sampling.Then,it analyzes ensemble classifier to promote the accuracy of islanding detection.During the simulation,power imbalance and the disturbance of local load have been taken into account.Eventually,it has been proven that the two processes mentioned above play an important role in islanding detection accuracy and generalization ability.

islanding detectionconcept driftclustering preprocessingensemble classifiers

宣婷婷、李峰、谭啸风

展开 >

上海电力设计院有限公司,上海200023

国网上海市电力公司,上海200122

孤岛检测 概念漂移 聚类预处理 集成分类器

2014

华东电力
华东电力试验研究院有限公司

华东电力

CSTPCD
影响因子:0.551
ISSN:1001-9529
年,卷(期):2014.42(12)
  • 1
  • 2