首页|基于FCM和PSO-SVM的电力工程造价预测模型研究

基于FCM和PSO-SVM的电力工程造价预测模型研究

扫码查看
为了准确地估计新建变电工程的造价水平,提出一种基于模糊聚类方法与粒子群优化的支持向量机的组合预测模型.通过模糊聚类分析,将具有高度相似性的样本工程进行归类,使得同类别中的样本规律更加容易识别,然后使用PSO-SVM分别对每类工程进行造价预测.基于聚类分析处理的PSO-SVM预测模型的实例测算结果与单一预测模型的测算结果相比,7个测试样本的预测精度都降到了5%以内,证明了这种方法的有效性和准确性.
Predicting Model of Power Engineering Cost Based on the FCM and PSO-SVM
In order to accurately estimate the cost level of the new substation project,this paper proposes a predicting model based on the combination of the fuzzy clustering method (FCM) and the support vector machine optimized by the particle swarm algorithm (PSO-SVM).Through fuzzy clustering analysis,the project samples with a high degree of similarity were classified,so that the sample rules in the same class are easier to identify.Then the PSO-SVM was used for cost forecasting of each class respectively.Compared with single forecasting model,the prediction accuracy of the seven test samples which used the PSO-SVM prediction model based on clustering analysis were reduced to less than 5%,proving the validity and accuracy of this method.

electricity costfuzzy clusteringparticle swarm algorithmsupport vector machine

冯瀚、刘冰旖、张玉鸿、邱金鹏、杨海燕、周萍

展开 >

国网四川省电力公司经济技术研究院,成都610041

华北电力大学经济与管理学院,北京102206

电力造价 模糊聚类 粒子群算法 支持向量机

2014

华东电力
华东电力试验研究院有限公司

华东电力

CSTPCD
影响因子:0.551
ISSN:1001-9529
年,卷(期):2014.42(12)
  • 5