首页|基于遗传算法改进模型的变电站选址定容

基于遗传算法改进模型的变电站选址定容

扫码查看
给出了变电站成本与负荷需求相结合的寻求最优寻址的投资策略的新目标函数,并且采用了Matlab 中的遗传算法工具箱GADS(Toolboxes-Genetic Algorithm and Direct Search)运行实现,最终通过结合投资成本与连接方式得到了最优变电站数量与变电站寻址结果的最佳配置,同时针对110 kV电力网络规划中变电站选址定容的结构复杂,变量多的特点,利用遗传算法(Genetic Algorithm)概率化的寻优方法,自动获取和指导优化的搜索空间,自适应地调整搜索方向的特性进行寻址操作,并通过实例计算验证了其合理性、科学性.
Based on the genetic algorithm and the improved model for Substation Locating and Sizing
substation capacity in the grid planning site has vital significance,which determines the location of power network planning,the direct impact on the future of the power system,the network structure and the quality of power supply,economy and power supply reliability.In this paper the substation cost and demand for optimal combination of investment strategy of addressing the new target function,and adopted the Matlab Genetic Algorithm toolbox GADS (Toolboxes-Genetic Algorithm and Direct Search),as running through combining investment costs and connections for the optimal number of substation and substation addressing the optimal configuration,and the power network planning for 110 kV substations location of complex structure,the capacity of variables,using Genetic Algorithm is the optimal method of probability,the automatic acquisition and guiding optimal Search space,adaptively adjust the Search direction of addressing operation,characteristics and through the calculation example to verify its rationality and scientific.

power system planningsubstation locating and sizinggenetic algorithmGADS toolbox

谢俊、沈主浮、顾晓鸣、张菁菁

展开 >

国网上海市电力公司市区供电公司,上海200080

电网规划 变电站选址定容 遗传算法 GADS工具箱

2014

华东电力
华东电力试验研究院有限公司

华东电力

CSTPCD
影响因子:0.551
ISSN:1001-9529
年,卷(期):2014.42(z1)
  • 1