首页|基于机器学习的淬冷沸腾最小膜态沸腾温度预测和灵敏度分析研究

基于机器学习的淬冷沸腾最小膜态沸腾温度预测和灵敏度分析研究

Research on Prediction and Sensitivity Analysis of Minimum Film Boiling Temperature of Quenching Boiling Based on Machine Learning

扫码查看
淬冷沸腾广泛应用于核反应堆失水事故后燃料棒的冷却过程中,最小膜态沸腾温度(Tmin)的确定对核反应堆的安全运行至关重要.本文基于文献的实验数据,选用了3种典型机器学习模型:随机森林(RF)、人工神经网络(ANN)和极端梯度提升(XGBoost),对淬冷沸腾Tmin进行预测和影响因素灵敏度分析研究.结果表明,机器学习方式能够有效提高淬冷沸腾Tmin预测的准确性,其预测性能相较于传统的经验关联式有大幅提升,其中RF模型预测效果最优,决定系数R2为0.9770;通过结合RF模型和Sobol'全局灵敏度方法,得到对淬冷沸腾Tmin影响最大的参数为冷却剂过冷度,其次为初始壁温,长径比、压力、热物性对其影响较小.本文研究成果将为提高核反应堆的安全性提供理论指导.
Quenching boiling is widely used in the cooling process of fuel rods after the loss of coolant accident in nuclear reactor.The determination of the minimum film boiling temperature(Tmin)is very important for the safe operation of nuclear reactors.Based on the experimental data in the literature,this paper selects three typical machine learning models:Random Forest(RF),Artificial Neural Network(ANN)and eXtreme Gradient Boosting(XGBoost)to predict Tmin during quenching boiling and conduct a sensitivity analysis of influencing factors.The results show that the machine leaming method can effectively improve the accuracy of Tmin prediction compared to the traditional empirical correlation.Among the models,the RF model exhibits the best predictive performance with a coefficient of determination R2 of 0.9770.By combining the RF model with the Sobol'global sensitivity method,the study identifies the coolant subcooling as the most influential parameter on Tmin,followed by initial wall temperature,while length-diameter ratio,pressure and thermophysical properties have a smaller impact.The findings of this research will provide theoretical guidance for improving the safety of nuclear reactors.

Quenching boilingMinimum film boiling temperatureMachine learningGlobal sensitivity

张军权、邓坚、罗彦、卢涛

展开 >

北京化工大学机电工程学院,北京,100029

中国核动力研究设计院核反应堆系统设计技术重点实验室,成都,610213

淬冷沸腾 最小膜态沸腾温度 机器学习 全局灵敏度

国家自然科学基金国家自然科学基金

52176052U2067210

2024

核动力工程
中国核动力研究设计院

核动力工程

CSTPCD北大核心
影响因子:0.3
ISSN:0258-0926
年,卷(期):2024.45(4)