首页|基于BPNN-SVM-ELM融合算法的气化炉预测模型

基于BPNN-SVM-ELM融合算法的气化炉预测模型

扫码查看
基于遗传算法-反向传播神经网络(GA-BPNN)、遗传算法-支持向量机(GA-SVM)、极限学习机(ELM)单一数据驱动模型稳定性差、信息熵线性融合模型建立时间成本高的问题,提出了信息熵Stacking融合建模法.使用工厂实际生产数据,以气化炉负荷、进料压力与流量、激冷水流量为输入,以气化炉出口温度、水洗塔出口合成气温度与流量、合成气组成为输出,建立了气化炉的信息熵Stacking融合预测模型.结果表明:信息熵Stacking融合模型预测项——气化炉出口温度、水洗塔出口合成气温度与流量、合成气中CO含量与H2含量这5个参数的平均相对误差(MRE)分别为1.89%、0.17%、0.78%、0.95%与0.71%,均表现良好且较单一数据驱动模型更加稳定,拟合速度较信息熵线性融合模型提升约19%.模型可结合优化算法应用于气化过程氧气与煤浆流量比等操作条件的在线优化以及气化炉气化温度的优化,从而提高过程的有效气产率.
A Prediction Model of Gasifier Based on BPNN-SVM-ELM Fusion Algorithm
Because of the insufficient stability and high time cost of single data-driven models,Genetic Algorithm-Back Propagation Neural Network(GA-BPNN),Genetic Algorithm-Support Vector Machine(GA-SVM)and Extreme Learning Machine(ELM),a fusion modeling method of information entropy Stacking is proposed to establish linear fusion models of information entropy.Actual production data,the gasifier load,feed pressure and flow rate,and cooling water flow rate were used as inputs,while the gasifier outlet temperature,syngas flow temperature and rate,and syngas composition at the outlet of the washing tower were used as outputs.An information entropy Stacking fusion model of the gasifier was established.The Mean Relative Errors(MRE)of the predictions of the information entropy Stacking fusion model on the gasifier outlet temperature,syngas outlet temperature and flow rate,syngas CO content,and H2 content were determined to be 1.89.%,0.17%,0.78%,0.95%,and 0.71%,respectively.These results are more stable than those obtained by the single data driven model.The fitting speed was about 19%higher than that of the linear information entropy fusion model.Combined with the optimization algorithm,our model can be applied to the online optimization of operating conditions such as oxygen coal ratio in the gasification process,the gasification temperature of the gasifier,and the effective gas yield during the process.

coal gasificationBPNNSVMELMStacking algorithm

王恺洲、韩洋、仇鹏、许建良、代正华、刘海峰

展开 >

华东理工大学资源与环境工程学院,上海煤气化工程技术研究中心,上海 200237

新疆大学化工学院,乌鲁木齐 830046

煤气化 BPNN SVM ELM Stacking算法

上海市科技创新行动计划上海市优秀技术带头人项目

21DZ120900319XD1434800

2024

华东理工大学学报(自然科学版)
华东理工大学

华东理工大学学报(自然科学版)

CHSSCD北大核心
影响因子:0.289
ISSN:1006-3080
年,卷(期):2024.50(2)
  • 24