首页|融合关系和结构编码的规则抽取与推理研究

融合关系和结构编码的规则抽取与推理研究

扫码查看
领域知识图谱拥有不完备性和语义复杂多样性的特点,从而导致其在规则抽取和选择问题上的不足,影响了其推理的能力.针对此问题,提出了一种融合关系和结构编码的规则抽取模型.通过提取目标子图中的关系和结构信息并进行特征编码,从而实现了一种多维度的嵌入表达方法.设计了融合关系和结构信息的自注意力机制,使模型能够更好地捕捉输入序列中的依赖关系和局部结构信息,从而提升了模型对于上下文的理解和表达能力,进而解决了在语义复杂情况下规则的抽取和选择的问题.通过在真实汽车部件故障工业数据集和公共数据集的实验,表明了在链接预测与规则质量评估任务中,所提出的模型都有一定的提升(规则长度为3时,mean reciprocal rank(MRR)平均提升了7.1百分点,Hits@10平均提升了8.6百分点;规则长度为 2时,MRR平均提升了 7.4百分点,Hits@10平均提升了3.9百分点),证实了关系和结构信息对于规则抽取与推理的有效性.
Rule extraction and reasoning for fusing relation and structure encoding
The domain knowledge graph exhibits characteristics of incompleteness and semantic complexity,which lead to shortcomings in the extraction and selection of rules,thereby affecting its inferential capabilities.A rule extraction model that integrates relationship and structural encoding is proposed to address this issue.A multidimensional embedding approach is achieved by extracting relational and structural information from the target subgraph and conducting feature encoding.A self-attention mechanism is designed to integrate relational and structural information,enabling the model to capture dependency relationships and local structural information in the input sequence better.This enhancement improves the understanding and expressive capabilities of context of the model,thus addressing the challenges of rule extraction and selection in the complex semantic situations.The experimental results for actual industrial datasets of automotive component failures and public datasets demonstrate improvements in the proposed model for link prediction and rule quality evaluation tasks.When the rule length is 3,an average increase of 7.1 percentage points in the mean reciprocal rank(MRR)and an average increase of 8.6 percentage points in Hits@10 are observed.For a rule length of 2,an average increase of 7.4 percentage points in MRR and an average increase of 3.9 percentage points in Hits@10 are observed.This confirms the effectiveness of relational and structural information in rule extraction and inference.

industrial knowledge graphrule extractionrule reasoningknowledge completionlink prediction

胡继米、万卫兵、程锋、赵宇明

展开 >

上海工程技术大学 电子电气工程学院,上海 201620

上海交通大学 自动化系,上海 200240

工业知识图谱 规则抽取 规则推理 知识补全 链接预测

2025

华东师范大学学报(自然科学版)
华东师范大学

华东师范大学学报(自然科学版)

北大核心
影响因子:0.55
ISSN:1000-5641
年,卷(期):2025.(1)