首页|不同输入变量对光伏功率异常数据修复的影响分析

不同输入变量对光伏功率异常数据修复的影响分析

扫码查看
光伏电站及分布式光伏设备输出功率数据记录因量测设备异常、通信故障、信号干扰等因素会出现异常,影响电网决策.因此,本文提出基于遗传算法优化初值的反向传播神经网络,利用GA-BP神经网络进行异常数据修复,建立线性内插法数据修复模型作为对照组,研究了以数值气象记录(辐照强度、气温、相对湿度、风速及风向)、天气类型、邻近相似电站功率等参数的不同组合作为神经网络的输入变量对修复效果的影响.实例分析表明,采用全部的输入变量可取得较好的修复效果.
Influence of Different Input Variables on the Restoration of Abnormal Data of Photovoltaic Power
The output power data record of photovoltaic power stations and distributed photovoltaic equipment may exhibit a-nomalies due to measurement equipment abnormalities,communication failures,signal interference,and other factors,which will affect the power grid decision-making.Therefore,this study proposes a back-propagation neural network based on genetic algo-rithm optimization of initial values,utilizing the abnormal data repair of GA-BP neural network,and establishing a linear inter-polation data repair model as the control group.This article investigates the effects of using numerical meteorological records(radiation intensity,temperature,relative humidity,wind speed,and direction),weather types,power of nearby similar power stations,and different combinations of these parameters as input variables for neural networks on repair effectiveness.The ex-ample analysis shows that better repair effect can be obtained by using all input variables.

photovoltaicartificial neural networkabnormal data repairgenetic algorithminput variables

高冰、李国翊、高丽娟

展开 >

国网河北省电力有限公司衡水供电分公司,河北 衡水 053000

光伏发电 人工神经网络 异常数据修复 遗传算法 输入变量

2024

河北电力技术
河北省电机工程学会,河北省电力研究院

河北电力技术

影响因子:0.306
ISSN:1001-9898
年,卷(期):2024.43(1)
  • 11