首页|基于动态FOA优化RBF神经网络的综合能源系统负荷预测

基于动态FOA优化RBF神经网络的综合能源系统负荷预测

扫码查看
综合能源系统多元负荷预测是有效提升能源利用效率、降低用能成本的主要途径之一.针对综合能源系统数据繁杂、不易预测的问题,首先引入动态FOA算法优化RBF神经网络,帮助RBF神经网络寻优;其次运用Lasso原理对气象因素进行选择,将负荷数据及气象因素输入到动态FOA优化后的RBF神经网络;最后对北方某园区进行综合能源系统负荷预测,并与BP神经网络进行对比验证.预测结果表明,采用该方法进行负荷预测能有效改善预测效果,保障了区域综合能源系统的优化运行.
Load Forecasting of Integrated Energy System Based on Dynamic FOA Optimized RBF Neural Network
Multivariate load forecasting of integrated energy system is one of the main ways to effectively improve energy utiliza-tion efficiency and reduce energy costs.In this paper,in response to the problem of complex data and difficulty in predicting and planning in integrated energy system,the dynamic FOA algorithm is introduced to optimize RBF neural network and assist in its optimization.Secondly meteorological factors is selected by using the Lasso principle,and the load data as well as meteoro-logical factors are inputted into the dynamic FOA optimized RBF neural network.Finally,a comprehensive energy system load prediction is conducted for a certain park in the north,and compare as well as verify with BP neural network.The prediction re-sults indicate that using this method for load forecasting can effectively improve the prediction effect and ensure the optimal op-eration of integrated energy system.

integrated energy systemload forecastingRBF neural networkFOA algorithm

黄文静、吴蔚

展开 >

河北工业职业技术大学智能制造学院,河北 石家庄 050091

国网河北省电力有限公司石家庄供电分公司,河北 石家庄 050004

综合能源 负荷预测 RBF神经网络 FOA算法

河北省教育厅科技项目

zc2022042

2024

河北电力技术
河北省电机工程学会,河北省电力研究院

河北电力技术

影响因子:0.306
ISSN:1001-9898
年,卷(期):2024.43(2)
  • 10