首页|机器学习在光伏发电功率预测中的应用分析

机器学习在光伏发电功率预测中的应用分析

扫码查看
光伏发电存在典型的间歇性、随机性、不确定性特征,准确的光伏发电功率预测模型对于保障电力平衡、优化方式安排、促进新能源消纳十分必要.机器学习通过学习已有的大量数据形成预测及判断,能够挖掘数据内在价值,在光伏发电领域取得丰富成果.给出基于机器学习的光伏发电功率预测框架,重点分析了传统机器学习模型、深度学习模型、组合集成学习模型、在线学习模型、物理数据联合驱动模型5种光伏发电预测方法,并对每种方法给出研究建议.
Application of Machine Learning in Photovoltaic Power Generation Prediction
Photovoltaic power generation has typical characteristics of intermittency,randomness,and uncertainty.An accurate photovoltaic power generation prediction model is essential for ensuring power balance,optimizing mode arrangements,and pro-moting new energy consumption.Machine learning can form predictions and judgments by learning a large amount of existing data,and can explore the intrinsic value of the data,achieving rich results in the field of photovoltaic power generation.This arti-cle provides a framework for predicting photovoltaic power generation based on machine learning,with a focus on analyzing five types of photovoltaic power generation prediction methods:traditional machine learning models,deep learning models,combina-torial ensemble learning models,online learning models,and physical data joint driving models.And research recommendations are provided for each type of method.

machine learningphotovoltaic power generation predictionsmall sample learningonline learningintegrated learning

李特、王尧、武文起、赵炜

展开 >

国网河北省电力有限公司信息通信分公司,河北 石家庄 050000

河北水利电力学院,河北 沧州 061001

机器学习 光伏发电预测 小样本学习 在线学习 集成学习

2024

河北电力技术
河北省电机工程学会,河北省电力研究院

河北电力技术

影响因子:0.306
ISSN:1001-9898
年,卷(期):2024.43(3)