首页|一种自适应的红外图像劣化瓷绝缘子诊断方法

一种自适应的红外图像劣化瓷绝缘子诊断方法

扫码查看
针对红外图像劣化瓷绝缘子智能诊断的问题,从图像处理结合数据分析思路入手,提出了一种自适应的智能诊断方法,首先通过Oriented-RCNN和PCA-Net两种不同复杂程度的深度学习网络实现了高精度的整串瓷绝缘子及铁帽定位,再根据行业标准计算得到整串瓷绝缘子的相对温差曲线后,利用局部异常因子算法自适应获取缺陷判断的阈值,适用于不同平台、不同型号的热像仪检测图像.试验证明了本文方法的有效性,劣化诊断准确率超过90%,可有效提升劣化瓷绝缘子的检测及诊断效率.
An Adaptive Diagnosis Method for Porcelain Insulator Deterioration Based on Infrared Images
To address the challenge of diagnosing infrared image degradation of porcelain insulators,this paper proposes an adap-tive intelligent diagnosis method.First,high-precision location of the entire insulator string and steel caps is achieved through two deep learning networks of varying complexity.After calculating the relative temperature-difference curve for the entire insu-lator string according to industry standard,the Local Outlier Factor(LOF)algorithm is employed to adaptively determine the defect threshold.This method is designed to be applicable to infrared images captured by different models of thermal imagers.The experimental section analyzes key parameters and demonstrates the effectiveness of the method,achieving a degradation di-agnosis accuracy of over 90%.This approach significantly enhances the efficiency and effectiveness of porcelain insulator degra-dation diagnosis.

porcelain insulatordeterioration diagnosisinfrared imagedeep learninglocal outlier detection

胡晓东、于传维、王世强、陈芳、张艳辉

展开 >

国网山东省电力公司聊城供电公司,山东 聊城 252000

瓷绝缘子 劣化诊断 红外图像 深度学习 局部异常检测

国网山东省电力公司科技项目

520611220001

2024

河北电力技术
河北省电机工程学会,河北省电力研究院

河北电力技术

影响因子:0.306
ISSN:1001-9898
年,卷(期):2024.43(5)