首页|考虑商品互补替代关系和序列模式的推荐算法

考虑商品互补替代关系和序列模式的推荐算法

扫码查看
用户真实的购买场景中,购物不仅仅看兴趣,当下以及未来需求也很重要,而现有大部分推荐方法研究的是挖掘用户近期兴趣,较少从商品间的关系来研究用户潜在需求.为了提高推荐算法准确性,丰富推荐种类,本文将商品互补替代关系特征和购买先后序列模式融入到推荐算法中,提出一种考虑商品互补替代关系和购买序列模式来研究用户潜在需求的推荐算法,该算法在亚马逊公开数据集Grocery上进行验证,并与相关算法进行对比,结果表明所提算法在命中率HR(hits ratio)和归一化折损累计增益NDCG(nor-malized discounted cumulative gain)指标上均得到有效的改进.
Recommendation algorithm considering complementation,substitution relation and sequence pattern of goods
In the real purchasing scenario of users,shopping is not only based on interests,but also on current and future needs.However,most of the existing recommendation methods focus on mining users'recent interests,and rarely study users'potential needs from the relationship between products.In order to improve the accuracy of the recommendation algorithm and enrich the types of recommendation,this paper integrates the characteristics of commodity complementary substitution relationship and purchase sequence pattern into the recommendation algorithm,and proposes a recommendation algorithm that considers the commodity complementary substitution relationship and purchase sequence pattern to study the potential needs of users.The algorithm is verified on Amazon public data set Grocery.Compared with the relevant algorithms,the results show that the proposed algorithm is effectively improved in hits Ratio HR(hits ratio)and normalized discounted cumulative gain(NDCG).

complementary pairingsequence modepersonalized recommendations

任志波、戎秀玲、宋欣欣

展开 >

河北大学综合实验中心,河北保定 071002

新疆艺术学院舞蹈学院,新疆乌鲁木齐 830000

互补搭配 序列模式 个性化推荐

河北省社会科学基金资助项目

HB19Q011

2024

河北大学学报(自然科学版)
河北大学

河北大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.322
ISSN:1000-1565
年,卷(期):2024.44(5)
  • 5