哈尔滨工程大学学报(英文版)2024,Vol.23Issue(2) :434-442.DOI:10.1007/s11804-024-00415-4

Gibbs Sampling-based Sparse Estimation Method over Underwater Acoustic Channels

Wentao Tong Wei Ge Yizhen Jia Jiaheng Zhang
哈尔滨工程大学学报(英文版)2024,Vol.23Issue(2) :434-442.DOI:10.1007/s11804-024-00415-4

Gibbs Sampling-based Sparse Estimation Method over Underwater Acoustic Channels

Wentao Tong 1Wei Ge 2Yizhen Jia 1Jiaheng Zhang1
扫码查看

作者信息

  • 1. National Key Laboratory of Underwater Acoustic Technology,Harbin Engineering University,Harbin 150001,China;Key Laboratory for Polar Acoustics and Application of Ministry of Education,Harbin Engineering University,Harbin 150001,China;College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China
  • 2. Qingdao Innovation and Development Center of Harbin Engineering University,Qingdao,266400,China;State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China
  • 折叠

Abstract

The estimation of sparse underwater acoustic(UWA)channels can be regarded as an inference problem involving hidden variables within the Bayesian framework.While the classical sparse Bayesian learning(SBL),derived through the expectation maximization(EM)algorithm,has been widely employed for UWA channel estimation,it still differs from the real posterior expectation of channels.In this paper,we propose an approach that combines variational inference(VI)and Markov chain Monte Carlo(MCMC)methods to provide a more accurate posterior estimation.Specifically,the SBL is first re-derived with VI,allowing us to replace the posterior distribution of the hidden variables with a variational distribution.Then,we determine the full conditional probability distribution for each variable in the variational distribution and then iteratively perform random Gibbs sampling in MCMC to converge the Markov chain.The results of simulation and experiment indicate that our estimation method achieves lower mean square error and bit error rate compared to the classic SBL approach.Additionally,it demonstrates an acceptable convergence speed.

Key words

Sparse bayesian learning/Channel estimation/Variational inference/Gibbs sampling

引用本文复制引用

基金项目

Excellent Youth Science Fund of Heilongjiang Province(YQ2022F001)

出版年

2024
哈尔滨工程大学学报(英文版)
哈尔滨工程大学

哈尔滨工程大学学报(英文版)

CSTPCD
影响因子:0.381
ISSN:1671-9433
参考文献量20
段落导航相关论文