首页|多普勒测速声呐的自适应Kalman滤波算法

多普勒测速声呐的自适应Kalman滤波算法

扫码查看
针对小型自主水下无人潜器的运动特点,设计了一种加速度信息辅助的自适应Kalman滤波器,用于多普勒测速声呐的数据处理.首先基于时间序列分析法,建立了多普勒测速声呐噪声信号的AR模型,并根据当前统计模型设计了多普勒测速声呐Kalman滤波方程.然后针对滤波方程特点,设计了基于S面的自适应Kalman滤波器.实验结果表明,在已知加速度先验信息的条件下,基于S面的自适应Kalman滤波器能够根据小型水下机器人的运动特点实时调整滤波参数,滤波精度优于0.04m/s,且能够有效消除时间延迟,为小型水下机器人控制系统提供准确及时的速度信息.
An adaptive Kalman filter algorithm for a Doppler velocity log
An adaptive Kalman filter aided by acceleration information was designed for small autonomous underwater vehicle manoeuvre characteristics. First, an AutoRegressive ( AR) model of Doppler velocity log noise was a-chieved using the time series analysis method. Second, based on the current statistical model, the Kalman filter e-quation for a Doppler velocity log was designed. Finally, an adaptive Kalman filter based on the S plane was designed for the former filters equation characteristics. The experimental results show that when the prior information on acceleration is known, the adaptive Kalman filter based on the S plane has the ability of adjusting filter parameters in real time according to the manoeuvre characteristics with an accuracy that is within 0.04m/s. Furthermore, the time delay can be effectively eliminated, and accurate and timely rate information can be provided for small autonomous underwater vehicles.

Doppler velocity logAR modelCS modeladaptive Kalman filter

张强、孙尧、万磊、李晔

展开 >

哈尔滨工程大学水下机器人技术重点实验室,黑龙江 哈尔滨 150001

哈尔滨工程大学自动化学院,黑龙江 哈尔滨 150001

多普勒声呐 AR模型 CS模型 自适应Kalman滤波

国家自然科学基金国家自然科学基金中央高校基本科研业务费专项基金

50909025E091002HEUCF110129

2011

哈尔滨工程大学学报
哈尔滨工程大学

哈尔滨工程大学学报

CSTPCDCSCD北大核心EI
影响因子:0.655
ISSN:1006-7043
年,卷(期):2011.32(12)
  • 4
  • 5