首页|基于事件触发机制的动力定位系统神经自适应控制

基于事件触发机制的动力定位系统神经自适应控制

扫码查看
针对含模型参数不确定和环境干扰的水面船动力定位控制问题,本文提出了一种基于事件触发机制的神经自适应控制算法.结合径向基函数神经网络和最小学习参数算法设计自适应项补偿环境干扰和模型参数不确定.设计的自适应项仅有 3 个在线学习参数,减少了传统神经网络自适应技术的参数学习个数.再结合动态面控制技术和事件触发机制设计动力定位控制器,其中引入一种事件触发机制降低控制器到执行机构的信息传输负担,同时降低执行机构的动作次数.使用Lyapunov稳定性理论证明了闭环系统的稳定性.通过仿真试验和对比分析验证了提出控制律的有效性.
Neural adaptive control of a dynamic positioning system based on an event-triggered mechanism
This paper proposes a neural adaptive control algorithm based on an event-triggered mechanism for sol-ving the dynamic positioning control of surface vessels with model parameter uncertainties and environmental dis-turbances.First,an adaptive item is designed to compensate for the environmental disturbances and model parame-ter uncertainties by using the radial basis function neural network and the minimum learning parameter algorithm.The designed adaptive item has only three online learning parameters,thereby reducing the number of learning pa-rameters of the traditional neural network adaptive methods.A dynamic positioning controller is designed by combi-ning the dynamic surface control technology and an event-triggering mechanism,wherein the latter is introduced to reduce the load of information communication from the controller to the actuator and concurrently lower the execu-tion rate of the actuators.Then,the stability of the closed-loop system is analyzed using the Lyapunov theory.Finally,the effectiveness of the proposed control law is verified through simulation and comparative analysis.

dynamic positioning systemdynamic surface controlevent-triggered mechanismminimum learning parameterneural network

孙创、覃月明、夏天、夏国清

展开 >

宜昌测试技术研究所,湖北 宜昌 443003

上海船舶工艺研究所, 上海 200032

哈尔滨工程大学 智能科学与工程学院,黑龙江 哈尔滨 150001

动力定位系统 动态面控制 事件触发机制 最小学习参数 神经网络

工信部高技术船舶重大创新专项中国船舶重工集团有限公司科技创新与研发项目(2018)

201808K

2024

哈尔滨工程大学学报
哈尔滨工程大学

哈尔滨工程大学学报

CSTPCD北大核心
影响因子:0.655
ISSN:1006-7043
年,卷(期):2024.45(1)
  • 2