哈尔滨工程大学学报2024,Vol.45Issue(2) :314-323.DOI:10.11990/jheu.202212015

基于改进的IIE-SegNet的快速图像语义分割方法

Fast image semantic segmentation method based on improved IIE-SegNet

李庆 王宏健 李本银 肖瑶 迟志康
哈尔滨工程大学学报2024,Vol.45Issue(2) :314-323.DOI:10.11990/jheu.202212015

基于改进的IIE-SegNet的快速图像语义分割方法

Fast image semantic segmentation method based on improved IIE-SegNet

李庆 1王宏健 2李本银 2肖瑶 2迟志康2
扫码查看

作者信息

  • 1. 哈尔滨工程大学 智能科学与工程学院,黑龙江 哈尔滨 150001;烟台南山学院 智能科学与工程学院,山东 烟台 264000
  • 2. 哈尔滨工程大学 智能科学与工程学院,黑龙江 哈尔滨 150001
  • 折叠

摘要

针对IIE-SegNet计算复杂度高、计算量大等问题,本文提出一种基于IIE-SegNet的改进方法.编码结构中引入经ImageNet训练过的VGG16 和多尺度空洞卷积空间金字塔池化来获得丰富的编码信息;解码结构中,设计全局加平均模块来解决IIE-SegNet计算量大的问题;研究Focal损失函数来解决正、负采样不平衡的问题.实验结果表明:与IIE-SegNet相比,本方法在PASCAL VOC 2012 数据集上的语义分割速度更快,平均每次迭代快0.6 s左右,测试单张图像的时间平均减少了 0.94 s;分割精度更高,MIoU提升了 2.1%.在扩展的PASCAL VOC 2012(Exp-PASCAL VOC 2012)数据集上的语义分割速度更快,平均每次迭代快 0.4 s左右,测试单张图像的时间平均减少了0.92 s;分割精度更高,MPA和MIoU分别提升了 2.6%和 2.8%,特别是对于小尺度目标分割边界更清晰,性能得到了很大的提升.

Abstract

To address the high computational complexity and large computational load of IIE-SegNet,this paper proposes an improved method based on IIE-SegNet.VGG16 trained in ImageNet and multiscale atrous spatial pyra-mid pooling(MASPP)module are introduced into the encoding module to obtain abundant coding information.In the decoding structure,the global add average(GAA)module is designed to solve the problem of heavy computa-tion of IIE-SegNet.Focal loss function is analyzed to solve the problem of positive and negative sampling imbal-ance.The experimental result shows that compared with IIE-SegNet,on the PASCAL VOC 2012 dataset,our net-work achieves faster segmentation,with an average of 0.6 s faster per iteration,a reduction in the average time to test a single image by 0.94 s,and an increase in MIoU 2.1%.On the expanded PASCAL VOC 2012(Exp-PAS-CAL VOC 2012)data set,the semantic segmentation speed is faster,an average of 0.4 s faster per iteration,and the average time to test a single image is reduced by 0.92 s;furthermore,our network exhibits higher accuracy and improvements in the MPA and MIoU by 2.6%and 2.8%,respectively.In particular,for small-scale target seg-mentation,the boundary is clearer,and the performance is greatly improved.

关键词

语义分割/深度学习/多尺度空洞卷积空间金字塔池化/图像信息熵/全局加平均/VGG16/IIE-SegNet

Key words

semantic segmentation/deep learning/multiscale atrous spatial pyramid pooling(MASPP)/image in-formation entropy(IIE)/global add average(GAA)/VGG16/IIE-SegNet

引用本文复制引用

基金项目

GF科技创新特区项目(21-163-05-ZT-002-005-03)

水下机器人重点实验室基金项目(JCKYS2022SXJQR-09)

哈尔滨工程大学高水平科研引导专项(3072022QBZ0403)

出版年

2024
哈尔滨工程大学学报
哈尔滨工程大学

哈尔滨工程大学学报

CSTPCD北大核心
影响因子:0.655
ISSN:1006-7043
参考文献量5
段落导航相关论文