首页|基于迁移学习的滚动轴承剩余使用寿命预测

基于迁移学习的滚动轴承剩余使用寿命预测

扫码查看
为解决轴承剩余使用寿命预测模型预测泛化能力低,不能准确预测出未训练轴承剩余使用寿命的问题,本文提出了一种迁移轴承状态知识的剩余使用寿命的方法。利用计算时域、频域特征以及模糊熵作为预测特征,使用"3σ"准则将轴承全寿命过程划分为正常阶段、退化阶段,以实现对退化阶段轴承剩余使用寿命的预测。构建基于门控循环单元的轴承剩余使用寿命预测模型,并使用某一轴承的全寿命周期数据进行训练,使模型学习到新轴承的状态信息。研究表明:相较于未使用迁移学习的方法,其预测所有轴承的轴承剩余使用寿命平均均方根误差减小了 52。53%,平均百分比误差减少了 68。87%。本文提出的方法可以有效、准确地预测出轴承的轴承剩余使用寿命。
Prediction of the remaining service life of a rolling bearing based on transfer learning
To address the issue of low generalization ability in predicting the remaining useful life(RUL)of bear-ings using the prediction model,and difficulties in accurately predicting the RUL of untrained bearings,this paper proposes a method to transfer knowledge of bearing conditions for RUL prediction.By utilizing computed time and frequency-domain features,and fuzzy entropy as predictive features,the bearing's entire life cycle is divided into normal and degraded stages employing the'3σ'criterion to achieve prediction of the RUL during the degradation stage.A bearing's RUL prediction model based on Gated Recurrent Units is constructed,trained on the full life cycle data of a particular bearing to enable the model to learn the state information of new bearings.Research indi-cates that,compared to methods not employing transfer learning,the root mean square error in predicting the RUL of all bearings decreased by 52.53%,while the average percentage error reduced by 68.87%.The proposed meth-od effectively and accurately predicts the RUL of bearings.

gated recurrent unitremaining useful life predictionroll bearingtransfer learningpretrainingfuzzy entropydegradation stagefeature fusion

姜苗、向阳、魏建红

展开 >

武汉理工大学 船海与能源动力工程学院,湖北 武汉 430000

高性能船舶技术教育部重点实验室(武汉理工大学),湖北武汉 430000

门控循环单元 剩余使用寿命预测 滚动轴承 迁移学习 预训练 模糊熵 退化阶段 特征融合

国家工信部绿色智能内河船舶创新专项

20201g0079

2024

哈尔滨工程大学学报
哈尔滨工程大学

哈尔滨工程大学学报

CSTPCD北大核心
影响因子:0.655
ISSN:1006-7043
年,卷(期):2024.45(4)
  • 19