哈尔滨工程大学学报2024,Vol.45Issue(5) :996-1004.DOI:10.11990/jheu.202212001

基于DQN的自动化集装箱码头自动引导车多目标调度优化

Multiobjective scheduling optimization of AGVs in DQN algorithm-based automated container terminals

初良勇 梁冬
哈尔滨工程大学学报2024,Vol.45Issue(5) :996-1004.DOI:10.11990/jheu.202212001

基于DQN的自动化集装箱码头自动引导车多目标调度优化

Multiobjective scheduling optimization of AGVs in DQN algorithm-based automated container terminals

初良勇 1梁冬2
扫码查看

作者信息

  • 1. 集美大学航海学院,福建厦门 361021;福建航运研究院,福建厦门 361021;集美大学现代物流研究中心,福建厦门 361021
  • 2. 集美大学航海学院,福建厦门 361021;集美大学现代物流研究中心,福建厦门 361021
  • 折叠

摘要

以自动引导车利用率最大和能源消耗量最小为 目标,建立AGV调度优化数学模型,设计7种不同调度策略作为可变调度策略空间,提炼自动引导车调度问题的状态特征和奖励函数,提出一种基于深度Q学习网络算法(deep Q-network,DQN)的可变调度策略的调度算法.算例分析结果表明:与GA算法和Q-learning算法相比,采用基于DQN的调度优化方法求得的调度方案可使自动引导车的利用率分别提高14.76%和19.92%;能源消耗方面,采用DQN算法求得的调度方案平均能耗与GA算法和Q-learning算法相比分别降低16.88%和10.77%.通过与固定调度策略相比,平均利用率提升12.39%,平均能耗降低7.58%.可见本文方法的求解质量更高,同时与固定策略相比验证了所提出可变策略的有效性.

Abstract

Taking the maximum utilization rate of AGV and the minimum energy consumption as the objectives,we establish a mathematical model of AGV scheduling optimization,design seven different scheduling strategies as the space of variable scheduling strategies,refine the state characteristics and the reward function of the AGV schedu-ling problem,and propose a scheduling algorithm based on the variable scheduling strategy of Deep Q-Network(DQN).Results show that compared with the GA and Q-learning algorithms,the scheduling scheme derived based on the DQN scheduling optimization method can improve the utilization rate of AGVs by 14.76%and 19.92%.For energy consumption,the average energy consumption of the scheduling scheme based on DQN is reduced by 16.88%and 10.77%,compared with that of the GA and Q-learning algorithms.By comparing with the fixed scheduling strategy,the average utilization is improved by 12.39%,and the average energy consumption is reduced by 7.58%.Moreover,the solution quality of the proposed method is higher,while the effectiveness of the proposed variable strategy is verified by comparing it with the fixed strategy.

关键词

自动化集装箱码头/深度强化学习/自动引导车调度/调度策略

Key words

automated container terminal/deep reinforcement learning/AGV scheduling/scheduling strategy

引用本文复制引用

基金项目

福建省自然科学基金(2021J01820)

国家重点研发计划(2017YFC0805309)

国家社会科学基金重大项目(23&ZD138)

国家社会科学基金重点项目(22AZD108)

福建省新型智库重大项目(24MZKA20)

出版年

2024
哈尔滨工程大学学报
哈尔滨工程大学

哈尔滨工程大学学报

CSTPCD北大核心
影响因子:0.655
ISSN:1006-7043
参考文献量16
段落导航相关论文